

© 2013 Wind River Systems, Inc

Building and Customizing a Wind
River Linux Platform Lab

Building and Customizing a Wind River Linux Platform
Lab

Objective

In this lab, you will create, build, and test a new Wind River Linux platform using

a simulated target. You will also learn how to:

 make changes to the target file system

 configure and build individual packages

NOTE: This lab should take approximately 45 minutes.

Setting Up the Build Environment

In this section, you will set up a new Wind River Linux platform build environment using

command line tools provided with the Wind River Linux product. The build environment

provides all the tools and configuration needed to cross compile and deploy a Wind River

Linux kernel and user space for a particular target.

1. In a shell on the host, create a new directory structure to house your platform build.

This can be located anywhere you like, but in this example, use the directory

$HOME/myplatform:

mkdir -p $HOME/myplatform

cd $HOME/myplatform

2. To establish the build environment for building the platform, you must invoke the

Wind River Linux configure script. This script is located within the Wind River

Linux product installation. Using syntax similar to GNU autoconf, configure

supports a number of command-line arguments for selecting a BSP, kernel type, and

file system profile, as well as many other settings. Commonly used options are

summarized in the table below:

Option Name Purpose

--help Display an extensive list of supported options.

--enable-board Specify the target BSP.

--enable-kernel Select the type of Wind River Linux kernel to use.

--enable-rootfs
Select the type of Wind River Linux user space to
use.

--enable-build Select how software should be built.

--with-layer Include an additional layer.

--with-template Include an additional template.

--enable-ccache
Enable the compiler cache (ccache) to speed up
build time.

--with-ccache-dir Specify an external compiler cache directory.

--with-sstate-dir
Bitbake shared state cache directory. Using a shared
state cache significantly improves build times.

View the complete list of options available:

$WIND_BASE/wrlinux/configure --help

3. In this example, you will create a platform similar to the one shipped with the lab

environment. Doing so will significantly reduce build time since the shared state

cache found at /Labs/sstate can be used to accelerate the build.

$WIND_BASE/wrlinux/configure --enable-board=$BSP \

 --enable-kernel=$KERNEL \

 --enable-rootfs=$ROOTFS \

 --with-sstate-dir=/Labs/sstate

The output of configure will stream by. Once configure finishes, your directory will

contain the infrastructure needed to build and deploy your own customized Linux

distribution. Take the time to familiarize yourself with the build environment. There

are a few important directories to note:

 The build directory hosts soft links to the build directories for each package. This

subdirectory also hosts a Makefile used to build special targets associated with

the packages. For more details, execute the following command:

make -C build help

 The bitbake_build/conf directory contains the following important files:

 local.conf, which contains crucial build configuration information. A soft

link to this file is created in the top-level directory for your convenience.

 bblayers.conf file lists the layers used in constructing the build environment.

 The export directory will contain the output of the build, including:

 An archive containing the target file system, which can be extracted directly

to a device file system or NFS share

 dist, a directory containing the target file system. When using a simulator

such as QEMU, it mounts this directory as a root file system during boot.

 The Linux kernel image. The name of this image might vary, depending on

your target.

 An archive containing the kernel modules.

 The host-cross directory contains tools used to build the platform, including (but

not limited to) the cross-compiling toolchain used to build programs for your

target. Note that the directories inside host-cross are soft links to corresponding

directories in bitbake_build/tmp/sysroots.

 The directory layers/local constitutes a “local layer” which functions as a

container for your project-specific customizations.

 The layers directory also contains additional layers used in your project; the stock

layers are all provided by the standard Wind River Linux installation, although

you may include additional custom layers if needed.

Building the Platform

With a configured build environment in place, you may now build your platform. The

output of this stage will be a Wind River Linux kernel image and root file system that are

ready to use by the target; both will be found in the export directory as noted in the

previous section.

The time required to build a platform varies on a number of factors, not the least of which

being the overall speed of your host. Other factors that have an impact are:

 Whether or not the kernel needs to be built from source; a complete build of the

kernel typically takes in the order of a half hour to an hour.

 The number of target user-space packages that need to be built from source. A

basic glibc_small system can be built entirely from source in about one to two

hours. A glibc_std system, on the other hand, can take many hours.

 Whether or not you are using a prepopulated shared state cache. If using a

shared state cache containing all the needed objects, the above build time for a

glibc_small system takes only minutes.

To provide for a better lab experience, the lab environment you are using includes a

shared state cache that prepopulated with all the objects needed to build a glibc_small

system for your target. Leveraging this using the --with-sstate-dir argument minimizes

the build time required.

4. To build your platform image, simply invoke make as follows:

make

5. After the build finishes, explore the contents of the export directory. In particular,

take note of export/dist, which contains a complete copy of your target file system.

Note however, that some file attributes aren’t quiet as expected. For example:

ls –l export/dist/dev

-rw-------. 1 wruser wruser 0 Jan 13 22:39 apm_bios

-rw-------. 1 wruser wruser 0 Jan 13 22:39 console

-rw-------. 1 wruser wruser 0 Jan 13 22:39 fb0

-rw-------. 1 wruser wruser 0 Jan 13 22:39 hda

-rw-------. 1 wruser wruser 0 Jan 13 22:39 hda1

-rw-------. 1 wruser wruser 0 Jan 13 22:39 hda10

-rw-------. 1 wruser wruser 0 Jan 13 22:39 hda11

…

Compare this to what you see in /dev on your host:

ls –l /dev

crw-rw----. 1 root video 10, 175 Jan 11 06:26 agpgart

crw-------. 1 root root 10, 235 Jan 11 06:26 autofs

drwxr-xr-x. 2 root root 300 Jan 11 06:26 block

drwxr-xr-x. 2 root root 80 Jan 11 06:26 bsg

c---------. 1 root root 10, 234 Jan 11 06:26 btrfs-control

drwxr-xr-x. 3 root root 60 Jan 11 06:26 bus

lrwxrwxrwx. 1 root root 3 Jan 11 06:26 cdrom -> sr0

drwxr-xr-x. 2 root root 3120 Jan 16 17:05 char

crw-------. 1 root root 5, 1 Jan 11 09:56 console

…

Focus not on the entries themselves, but rather the ownerships and attributes. Notice that

the entries in /dev on your host:

 Have root:root ownership

 Are primarily pipes or block or character device nodes rather than regular files (as

evidenced by the b , c and p bits in the leftmost column)

 The device nodes have major and minor numers associated with them (10,175,

5,1, etc)

Whereas the entries in export/dist/dev all appear as regular files owned by

wruser:wruser.

The reason for this is because the entire build, including the generation of export/dist,

was done as a regular user (wruser). Under these conditions, it would be impossible to

generate device nodes or any files owned by root. Instead, the file system is built in a

fake root environment called pseudo. To see the effect pseudo has on your view of the

files, enter the pseudo environment and then reexamine the directory:

scripts/fakestart.sh

ls –l export/dist/dev

crw-rw---- 1 root 46 10, 134 Jan 13 22:39 apm_bios

crw-rw--w- 1 root tty 5, 1 Jan 13 22:39 console

crw------- 1 root root 29, 0 Jan 13 22:39 fb0

brw-rw---- 1 root disk 3, 0 Jan 13 22:39 hda

brw-rw---- 1 root root 3, 1 Jan 13 22:39 hda1

brw-rw---- 1 root root 3, 10 Jan 13 22:39 hda10

brw-rw---- 1 root root 3, 11 Jan 13 22:39 hda11

…

Like magic, all is as it should be. Always remember that if you want to see the file system

exactly as it was meant to be, that you must first enter the pseudo environment in which it

was generated.

6. To leave the pseudo environment, simply issue the command exit.

Deploying Your Platform

With a built platform project in place, it is time to deploy and test your image on your

target. For a full discussion how to prepare and shut down your target, please refer to one

of the following labs, depending on the type of your target:

 If you are simulated target (QEMU or Wind River Simics), use the command

make start-target as outlined in the Simulating Targets with QEMU lab.

 If you are using a real board, please refer to the Working with a Hardware Target

lab.

7. Test your platform in the simulator using the following command:

make start-target

8. Once your target boots, log in using the credentials root and password root.

9. Feel free to explore your target using the command-line shell. When done, the

preferred method of shutting a Linux system is always using the poweroff command,

although you can use other methods as well, as outlined in the Simulating Targets

with QEMU lab.

Customizing the File System with changelist.xml

In this section, you will tweak the target file system with the help of a changelist.xml

file. This file will be located in the local layer and will be executed by the build system

just before the final file system image is generated.

Although these XML files might seem awkward to work with and edit, the main benefit

is that they integrate nicely with the Workbench file system management tools.

10. Use a changelist.xml file to copy the README.txt file found in

/Labs/BuildSystemLab directory into the /root directory of the target file system.

To do this, create a file called changelist.xml in the conf/image_final subdirectory of

the local layer (that is, layers/local/conf/image_final relative to the top-level

directory of the project). Populate the file with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<layout_change_list version="1">

<change_list>

<cl action="addfile" name="/root/README.txt"

 source="/Labs/BuildSystemLab/README.txt">

</change_list>

</layout_change_list>

NOTE: This is important: the cl action line must be entered as one continuous line.

Due to printing restrictions, it is broken across two lines in this document.

11. Once you have made your changes, rebuild the platform and start the target to test

your changes. Verify that the file /root/README.txt can be found on the target, and

that its contents match those on the host.

Customizing the File System with fs_final Scripts

In this section, you will tweak the target file system with the help of some fs_final_*.sh

scripts. Like changelist.xml files, these scripts will be located in the local layer and will

be executed by the build system just before the final file system image is generated.

Unlike changelist.xml files, fs_final scripts are plain shell scripts and are easier to write.

But there is no integration with the Workbench file system management tools.

12. Use an fs_final script to add an /etc/motd file to your target file system. The contents

of /etc/motd is displayed on the console right after you log in (motd originates from

the phrase, “Message Of The Day”).

To do this, create a file called fs_final_motd.sh in the same directory you used to

create the changelist.xml file in the previous section. Populate the file with the

following contents:

echo “Welcome to your Wind River Linux 5.x image” > etc/motd

NOTE: The lack of a leading slash in etc/motd is intentional. The fs_final scripts are

executed in the root directory of the target file system, but are not executed

within a chrooted environment. This allows fs_final scripts to have full

access to the host file system as changelist.xml files do; but careful attention

must be paid when referencing files. In this example, if you inadvertently

wrote /etc/motd, you would actually be referring to /etc/motd in the host file

system.

13. Rebuild your image and redeploy the updated image to your target. Log in to verify

that your changes have taken effect; you should see the contents of the motd file

display after you log in.

14. To see the benefits of the fs_final mechanism, suppose you want to embed

information into your root file system that is not static. Suppose, for example, that

you wanted to embed the build date and board name into the motd. Add the following

code to fs_final_motd.sh:

echo “This image was built on $(date)” >> etc/motd

15. Now rebuild and redeploy the updated image to your target again. Log in to verify

that your changes have taken effect. Notice that the date in the motd is hard-coded to

the exact time that the fs_final_motd.sh script was executed in building the file

system image.

16. Now, apply what you’ve learned to create a new fs_final script that creates a FIFO

entry, /mypipe with mode 0777. If you’re having difficulty, consult the online

manual:

man mkfifo

If you’re stuck, a solution can be found in /Labs/BuildSystemLab/fs_final_fifo.sh.

Simply copy this solution into the same directory as fs_final_motd.sh, rebuild the file

system, and deploy the image to the target.

Customizing and Building Individual Packages

Currently, your platform is built using the packages that ship with the Wind River Linux

product. It’s possible to rebuild individual packages from source if needed. Common

reasons for wanting to do this include:

 You wish to apply a patch to the source of a particular package

 You want to make configuration changes to a package

 You want to be able to debug the software provided by a particular package.

In this section, you will focus on the busybox package, which provides the core run-time

for glibc_small systems. In this exercise, you will modify the source of the ls program to

print an additional message when run.

17. To modify the source to busybox, open a development shell for the package, as

follows:

$ make -C build busybox.devshell

This will open a new terminal where the busybox source is located with all relevant

patches already applied. Note the name of the directory where the terminal opens,

busybox-1.19.4, which will be used in a later exercise.

18. Edit the code which implements the ls command provided by coreutils/ls.c. Add an

additional message to beginning of the ls_main() function; for example:

init_unicode();

fprintf(stderr, "Hello from ls\n");

if (ENABLE_FEATURE_LS_SORTFILES)

…

19. Once you finish editing the file, exit the development shell by typing exit or pressing

CTRL+D. You will be taken back to your original shell.

20. Now, rebuild busybox with your source changes:

make -C build busybox.rebuild

With the package rebuilt, once again rebuild the image and deploy it to the target to

test your changes. Verify that every time you invoke the ls command, your message

appears.

Note that the changes you have made are only temporary. If you do a clean,

distclean, or cleansstate, your changes will be lost, and the original behavior of ls

will be restored.

21. Now that you have seen how to modify software for your platform, clean the build

area as follows:

make -C build busybox.clean

22. Rebuild busybox, then rebuild the image and deploy it to your target. Now you will

notice that the behavior of ls is restored to its original state.

Building a Boot Image

As you have seen, building a kernel and target file system is relatively straightforward.

The product of this build is:

 A target file system rooted at export/dist

 A compressed archive containing the file system contents in the export directory

When deploying to hardware, you will often need a boot image; that is, a self-contained

file system image for deploying on to some form of medium; for example, flash storage.

Wind River Linux provides support for many common boot image formats:

 JFFS2 is derived from the original Linux flash file system, JFFS. JFFS2 is a

journaling read-write file system which performs on-the-fly compression.

Operating on top of the MTD subsystem, JFFS2 addresses the unique

requirements of flash, such as wear leveling.

 UBIFS is a read-write file system designed specifically for raw NAND flash. It

takes care of bad sectors in flash by implementing a logical layer that maps used

flash sector numbers to only good sectors in the physical media. UBIFS is

supported natively by the Linux kernel. Note that to deploy a UBIFS file on the

target’s NAND you need to “ubinize” the UBIFS file first to generate a .ubi file.

 CPIO is a common packing format used to pack the root file system into a single

file. This file, usually in a compressed form, can then be appended to the kernel

image itself in such a way that the Linux boot logic can use it as a root file system

contained entirely in RAM.

23. Reconfigure the project to generate JFFS2 and CPIO images by editing the file

local.conf in your project directory and appending the following:

IMAGE_FSTYPES += “jffs2 cpio.gz”

Again, the syntax might seem a little peculiar, but this is again a fragment of Python

code used by bitbake At a high level, IMAGE_FSTYPES lists the types of images to

build. Refer to local.conf for a full list of supported types.

24. Once you have saved your changes to the file local.conf, rebuilt your project. When

this finishes, you will see three files in the export/images directory with the suffixes

.jffs2 and .cpio.gz.

This concludes the lab. Do not proceed.

