

© 2013 Wind River Systems, Inc

Working with User-Defined
Projects Lab

Working with User-Defined Projects Lab

Objective

In this lab you will learn more advanced techniques for managing projects within

Workbench. You will have the opportunity to work with one of the two

fundamental build types provided by Workbench, and learn its unique advantages.

NOTE: This lab should take approximately 30 minutes.

Lab Overview

This lab focuses on the user-defined build type provided by the Workbench build

system. In a user-defined project, the user is wholly responsible for managing the

project’s build infrastructure — Workbench merely calls out to this user-managed

framework as needed.

While implementing and maintaining a build system may sound like a bad deal,

there are many cases where this type of build is beneficial. Consider the following

projects:

 the Linux kernel

 Busybox

 any software package driven by autoconf (that is, driven by a configure

script)

 any project that includes a Makefile

Chances are, you’ve worked with more than one of these in the past. These all

have one thing in common: they come with their own build system. If Workbench

didn’t work with user-defined build systems, you would have to spend time

mapping flexible managed build constructs to duplicate functionality already

provided by the project’s existing build infrastructure.

User-defined projects let you leverage work that has already been done, and at

the same time enjoy all the benefits Workbench has to offer.

In this lab, you will work with the source in the archive /Labs/workbench/vitetris-

0.57.tar.gz. The archive contains the source code for an open-source clone of the

popular game, Tetris, which renders on a standard text-based console. The

archive is structured as follows:

 A subdirectory called src, which functions as the root for all source code,

and contains a main Makefile that drives the build of the entire

application

 Subdirectories within src which implement various subsystems (input,

rendering, etc). Each subsystem is driven by its own makefile, and is built

as a self-contained static library.

This structure is fairly representative of projects that are deeply entrenched in a

build system of their own. Consider, for a moment, how you might import this

project into your workspace using a flexible managed build.

In situations like these, the value of user-defined projects becomes apparent — if

the software you’re working with comes with a build infrastructure that works,

why not use it?

Creating and Populating a User-Defined Project

1. Begin by creating a new native user-defined project, similar to the way you created a

native application project in the lab, Getting Started with Workbench. In the New

Wind River Workbench Project wizard, select Host OS (Native Development).

2. Click Next.

1 2

3. In the Build type field, select User-Defined.

4. Click Next.

5. Name this project vitetris and click Finish to create the project.

6. Now, import the source code into the project. In the Project Explorer view right-

click on the new vitetris project.

7. In the context menu, select Import to import the source code into the project.

3 4

6

7

8. In the Import dialog, select General > Archive File.

9. Click Next.

10. Click Browse to locate the archive from which Workbench will import resources.

8

9

10

11. In the Import from Archive File dialog, navigate to the /Labs/workbench directory,

and select vitetris-0.57.tar.gz.

12. Click OK.

11

12

13. In the Import dialog, Workbench presents a view of the files in the selected archive.

Verify that all files in the archive are selected (not just source files), and click Finish.

13

14. In the Project Explorer view, review the contents of your new project. Notice that:

 The imported source appears in the vitetris-0.57 subdirectory within your project

(mirroring the structure of the files within the source archive)

 Workbench has created a default Makefile in the root directory of the project

 There are no build targets, like you would see for a flexible managed build. This

is because the build targets for a user-defined project are defined and managed

differently than for a flexible managed build.

10 14

Building the Project

15. Build the project — in the Project Explorer view, right-click on the project and

select Build Project from the context menu.

Not much happens. Why? Examine the contents of Makefile to investigate the cause.

all :

 @echo "make: built targets of `pwd`"

clean :

 @echo "make: removing targets and objects of `pwd`"

When creating a new user-defined project, Workbench supplies a very basic Makefile

that essentially does nothing – it’s meant to be populated by you.

There are different solutions to the problem:

 Rewrite the Makefile to call into the Makefile provided by the vitetris-0.57

directory.

 Shift the contents of the viteris-0.57 directory up one directory level, thereby

overwriting the Workbench-supplied Makefile.

 Tell Workbench to call into the Makefile found in the vitetris-0.57 directory.

For the purpose of this exercise, consider the last option, for the first two will not

teach you anything about Workbench project management.

8 15

16. Access the Makefile options via the build properties for the project; in the Project

Explorer view, right-click on the vitetris project and select Properties from the

context menu.

13 16

17. In the Properties for vitetris dialog, in the navigation panel on the left, select Build

Properties.

18. Click the Build Support tab to access build settings.

19. In the Build command field, add the option -C vitetris-0.57; this option will instruct

make to use the Makefile in the vitetris-0.57 subdirectory rather than the one

contained in the top-level project directory.

20. Click Apply.

21. Click OK.

17 18 19 20 21

22. Attempt to build the project again, as you did in the first step of this section. Use the

Build Project option, not the Rebuild Project. This time, your build will succeed.

23. Now, attempt to rebuild the project using the Rebuild Project option in the context

menu.

The build fails this time, with the following error. Why?

 make: *** No rule to make target `all'. Stop.

The error indicates that the target Workbench invokes (all) cannot be found in the

Makefile. To see why Workbench is invoking this target, you will need to revisit the

properties for the vitetris project as you did earlier in this section.

20 23

24. In the Properties for vitetris dialog, in the navigation panel on the left, select Build

Properties, as you did before.

25. This time, click the Targets tab to access build target settings.

26. Focus your attention on the Rebuild Project rule(s) field. Notice that this is preset to

a value of “clean all”. In order for this to work, the Makefile must have both targets

defined. Refer back to the Makefile in the vitetris-0.57 directory to see which targets

are defined, and you will find that all is not defined. Replace all in the Rebuild

Project rule(s) field with an equivalent target that can be found in the Makefile.

27. When you’ve made your change, click Apply and OK.

28. Test your changes by rebuilding the project.

24 25 26 26 27

Adding Build Targets

You have seen how to edit the default targets that Workbench invokes in a user-defined

build. Sometimes, you must add new targets in order to access additional functionality

provided by a project’s Makefile. In this section, you will learn how to do this.

29. Add the following code to the end of the Makefile in the vitetris-0.57 directory, to

allow you to play the game via a build target:

play:<Space>build<Enter>

<Tab>$(TERM) ./$(PROGNAME)<Enter>

NOTE: Makefiles are notoriously picky about line formatting and spacing. Type

the lines exactly as shown, paying particular attention to the Tab in the

second line.

When invoked, this target (after ensuring that the project is built) will start the built

program in a shell defined by the TERM environment variable (typically this is set to

something like xterm).

30. Now, add this new build target to the vocabulary for this project. As you did in the

previous section, reopen the properties for the vitetris project and advance to the

Targets tab.

31. In the Custom build targets area, click New…

31 30

32. In the New Custom Build Target dialog, in both the Name and Make rule or

command fields, enter play.

33. Ensure that the Type field is set to Rule.

34. Click OK.

35. In the Properties for vitetris dialog, in the Custom build targets panel, notice the

addition of your new target.

34

35

33

15 32

36. Now ensure that Workbench sets a value for the TERM environment variable. Click

on the Variables tab in the Properties for vitetris dialog.

37. Click New…

38. In the New Build Macro dialog, in the Name field, enter a value of TERM.

39. In the Value field, specify xterm.

40. Click OK.

36 37

38

39

40

41. In the Properties for vitetris dialog, click Apply and OK.

40 41

42. Now, right click on the vitetris project in the Project Explorer view.

43. In the context menu, select Build Options > Play.

44. Enjoy!

This concludes the lab. Do not proceed.

42 42 43

