
WIND RIVER®

LINUX

WIND RIVER LINUX KERNEL COMMAND-LINE
TUTORIALS

7.0

Copyright Notice

Copyright © 2015 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or
by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc. The
Wind River logo is a trademark of Wind River Systems, Inc. Any third-party trademarks
referenced are the property of their respective owners. For further information regarding Wind
River trademarks, please see:

www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant notices (if
any) are provided in your product installation at one of the following locations:

installDir/product_name/3rd_party_licensor_notice.pdf
installDir/legal-notices/

Wind River may refer to third-party documentation by listing publications or providing links to
third-party Web sites for informational purposes. Wind River accepts no responsibility for the
information provided in such third-party documentation.

Corporate Headquarters

Wind River
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.
Toll free (U.S.A.): 800-545-WIND
Telephone: 510-748-4100
Facsimile: 510-749-2010

For additional contact information, see the Wind River Web site:

www.windriver.com

For information on how to contact Customer Support, see:

www.windriver.com/support

Linux

Wind River Linux Kernel Command-Line Tutorials

6 November 2015

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

1 Kernel Configuration and Patching with Fragments ... 1
Kernel Configuration and Patching with Fragments Tutorial .. 1

Kernel Configuration and Patching with Fragments .. 2

Populate the Local Layer with the Required Subdirectories 2

Create the Kernel's BitBake Append (.bbappend) File .. 3

Create the Kernel's Configuration Fragment ... 4

Clean up the Linux Kernel Package and Optionally Configure the Package 4

Rebuild the Linux Kernel Package and File System ... 5

Run the Emulated Target .. 6

Kernel Configuration and Patching with Fragments Summary 7

2 Kernel Configuration with menuconfig ... 9
Kernel Configuration with menuconfig Tutorial ... 9

Kernel Configuration with menuconfig ... 10

Viewing Installed Kernel Modules ... 10

Launching menuconfig and GUI Configuration Tools .. 11

Adding a Kernel Module .. 12

Removing Kernel Modules .. 13

Turning an Existing Kernel Module into a Static Feature 14

Saving the Configuration and Rebuilding the Kernel ... 14

Testing the New Configuration on an Emulated Target 15

Kernel Configuration with menuconfig Summary .. 16

3 Kernel Module Configuration with make Rules .. 17
Kernel Module Configuration with make Rules Tutorial ... 17

Kernel Module Configuration with make Rules ... 18

Determining Available Kernel Modules in a Platform Project Build 18

Adding a Kernel Module with make Rules ... 19

Removing a Kernel Module with make Rules .. 20

Kernel Module Configuration with make Rules Summary 21

4 Creating Alternate Kernels from kernel.org Source .. 23
Creating Alternate Kernels from kernel.org Source Tutorial ... 23

Creating Alternate Kernels from kernel.org Source ... 24

Creating Alternate Kernels from kernel.org Source Summary 26

iii

5 Exporting Custom Kernel Headers .. 27
Exporting Custom Kernel Headers to the Sysroot Tutorial ... 27

Exporting Custom Kernel Headers to the Sysroot ... 28

Exporting Custom Kernel Headers .. 28

Adding a File or Directory to be Exported when Rebuilding a Kernel 29

Exporting Custom Kernel Headers Summary ... 30

Appendix A: Wind River Education Resources ... 31

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

iv

1
Kernel Configuration and Patching

with Fragments

Kernel Configuration and Patching with Fragments Tutorial 1

Kernel Configuration and Patching with Fragments Tutorial

Learn about configuring and patching a Wind River Linux kernel with fragments through a
series of self-paced procedures.

Overview

When you have completed this tutorial, you will:

• understand how to use fragments to specify changes to the kernel's configuration file

• use the projectDir/layers/local directory and .bbappend file to specify the location of the
configuration fragment

• clean and configure the updated kernel package

• rebuild the kernel and file system

• test your kernel updates on a target platform

Tutorial Requirements

To complete this tutorial, you require a previously configured and built platform project. For
additional information on creating a platform project, see Wind River Linux Getting Started
Command Line Tutorials: Creating and Configuring a Platform Project.

1

Kernel Configuration and Patching with Fragments

Kernel configuration can be done conveniently using configuration fragments, which are small
files that contain kernel configuration options in the syntax of the original kernel's .config
configuration file.

Kernel fragments capture specific changes to the kernel's configuration file. Creating a basic
infrastructure inside the local layer enables them.

Once the infrastructure is in place, the BitBake build system will incorporate the kernel fragments
into the kernel configuration process to build the corresponding kernel image and associated
kernel modules.

In this section, you will learn to reconfigure the Linux kernel to make some changes on the kernel
modules that are installed by default.

The changes you will make include:

• Removing the floppy and parport (parallel port) modules, assuming that they are not
necessary for the intended target.

• Turning the minix kernel module into a static kernel feature, so that its functionality is
provided by the kernel image itself.

• Add the pcspkr (PC speaker) module.

Once complete, you will rebuild the kernel and file system, reboot the emulated target, and verify
that your changes have been applied.

Select Populate the Local Layer with the Required Subdirectories on page 2 to begin the tutorial
procedures.

Populate the Local Layer with the Required Subdirectories

Populate the local layer as part of configuring the Linux kernel with fragments.

Prerequisites

To perform this procedure, you must have a previously configured and built platform project.
For additional information, see Wind River Linux Platform Developer's Guide: Configuring and
Building a Complete Run-Time Image.

Populate the local layer with subdirectories.

From the platform project’s main directory, enter the following command to create the required
directories to maintain your kernel fragments:

$ mkdir -p layers/local/recipes-kernel/linux/linux-windriver

The basic directory structure necessary to support configuration fragments is dictated by the
content of the BBFILES variable inside the projectDir/layers/local/conf/layer.conf file. See Wind
River Linux Platform Developer's Guide: Directory Structure for Platform Projects.

More specifically, the element ${LAYERDIR}/recipes-*/*/*.bbappend in this variable determines
where the .bbappend files will be searched for. The part of the command line above that reads:
recipes-kernel/linux complies with this pattern.

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

2

The linux-windriver subdirectory is used to further localize kernel configuration files for the
kernels provided by Wind River and it is named after the Linux kernel package itself.

Postrequisites

Once the required directory structure is in place, you will need to create the kernel's .bbappend
file to specify the location of the kernel configuration fragment as described in Create the Kernel's
BitBake Append (.bbappend) File on page 3.

Create the Kernel's BitBake Append (.bbappend) File

The kernel's .bbappend file specifies the location of the kernel configuration fragment to the
build system.

Prerequisites

This procedure requires that you have populated the projectDir/layers/local directory with the
sub-directories required for patching the kernel as described in Populate the Local Layer with the
Required Subdirectories on page 2.

Step 1 Create the .bbappend file for the kernel.

Run the following command to create the kernel’s .bbappend file:

$ vi layers/local/recipes-kernel/linux/linux-windriver_3.14.bbappend

Step 2 Add the following default lines of code:

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
SRC_URI += "file://config_baseline.cfg"

The variable FILESEXTRAPATHS_prepend extends the search path of BitBake to include a
directory named after the package being processed, PN for package name under the current
directory, THISDIR. In this example, PN is linux-windriver and this explains why we originally
created a sub-directory with this name.

The name of the kernel fragment is added to the BitBake variable SRC-URI, which holds the list
of configuration files, of any kind, to be processed when building the project.

The syntax file://config_baseline.cfg is used to tell BitBake that the configuration fragment is to
be found as a regular text file inside the layer, and not for example, through a source version
control system somewhere else. This file is where you will add fragments that make changes to
the kernel.

Postrequisites

The presence of the .bbappend file in the project directory will ensure that the build system is
aware that a kernel configuration fragment requires processing as part of the platform project
build. With this file in place, you must ensure that the configuration fragment contains the
changes you want to make to the kernel as described in Create the Kernel's Configuration Fragment
on page 4.

1 Kernel Configuration and Patching with Fragments
Create the Kernel's BitBake Append (.bbappend) File

3

Create the Kernel's Configuration Fragment

Create a kernel fragment as part of configuring the Linux kernel with fragments.

Prerequisites

This procedure requires that you have created a .bbappend file for patching the kernel as
described in Create the Kernel's BitBake Append (.bbappend) File on page 3.

Step 1 Create the configuration fragment for the kernel.

Create the kernel’s config_baseline.cfg file.

$ vi layers/local/recipes-kernel/linux/linux-windriver/config_baseline.cfg

Step 2 Configure kernel fragments for this example.

The following lines add fragment configuration:

CONFIG_BLK_DEV_FD is not set
CONFIG_PARPORT is not set
CONFIG_MINIX_FS=y
CONFIG_INPUT_MISC=y
CONFIG_INPUT_PCSPKR=m

The configuration fragment(s) in this example have the same syntax as the .config file for the
kernel. Note that we added the statement:

CONFIG_INPUT_MISC=y

which is a prerequisite for the option CONFIG_INPUT_PCSPKR to become available.

Also note that lines starting with the # character are not comments but indicate instead that a
particular kernel feature is to be disabled.

At this moment the layer structure to support kernel configuration fragments should look like
this:

layers/local/recipes-kernel/ |- linux |- linux-windriver |- config_baseline.cfg |-
linux-windriver_3.14.bbappend

Postrequisites

Now that you have created the configuration fragment, it must be added to the build to ensure
the kernel features will work on the target platform. Prior to building the kernel, it is necessary to
clean and configure the kernel package as described in Clean up the Linux Kernel Package and
Optionally Configure the Package on page 4.

Clean up the Linux Kernel Package and Optionally Configure the Package

Clean up the Linux kernel package as part of configuring the Linux kernel with fragments.

Cleaning up the linux-windriver kernel package first is a necessary step to force the build system
to subsequently reload all associated configuration files. You should do this every time you make
changes to your kernel configuration fragments and prior to rebuilding the kernel package.

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

4

While optional, configuring the Linux kernel package ensures that configuration will happen
automatically when you rebuild the package. Since configuration is done much faster than
rebuilding. the advantage of doing the configuration step manually is that you can verify very
quickly that the changes specified in the configuration fragment are correct by inspecting the
generated configuration file of the kernel located at:

projectDir/build/linux-windriver-version/linux-qemux86-64-standard-build/.config

Prerequisites

This procedure requires that you have previously created a kernel configuration fragment as
described in Create the Kernel's Configuration Fragment on page 4.

Step 1 Clean up the Linux kernel package.

$ make linux-windriver.clean

Step 2 Optionally, configure the Linux kernel.

$ make linux-windriver.configure

Postrequisites

With the kernel package cleaned and configured to include the new configuration fragments, it is
time to build the kernel and platform project file system as described in Rebuild the Linux Kernel
Package and File System on page 5.

Rebuild the Linux Kernel Package and File System

Rebuild the kernel and file system as part of configuring the Linux kernel with fragments.

Once the kernel configuration fragment has been created, and the linux-windriver kernel
package has been cleaned and configured as described in Clean up the Linux Kernel Package and
Optionally Configure the Package on page 4, follow this procedure to rebuild the kernel.

Step 1 Rebuild the Linux kernel package and file system.

Run the following command from the platform project’s directory to rebuild the kernel package:

$ make linux-windriver.rebuild

Once complete, the new linux-windriver package is available containing the modified kernel
image to be used in the target.

Step 2 Rebuild the file system.

$ make

This command updates the root file system to include the new structure of kernel modules to be
loaded on the target. Note that if your configuration fragments do not modify the current or
default kernel modules then you do not need to rebuild the root file system.

For example, if the only line in the configuration fragment above had been
CONFIG_PRINTK_TIME=y, then only the kernel image would have been modified when
rebuilding the kernel package, and the root but the root file system would have remained the
same.

1 Kernel Configuration and Patching with Fragments
Rebuild the Linux Kernel Package and File System

5

Postrequisites

At this point, the changes you made to the kernel with your fragments are part of the platform
project build. To verify that the changes are successful, you can run them on an emulated target
as described in Run the Emulated Target on page 6.

Run the Emulated Target

Run the emulated target after you have configured the Linux kernel with fragments.

This procedure tests whether the kernel configuration fragments created in Create the Kernel's
Configuration Fragment on page 4 function as expected on a simulated target platform.

Prerequisites

To complete this procedure, you must have previously configured the kernel package and rebuilt
the file system as described in Rebuild the Linux Kernel Package and File System on page 5.

Step 1 Verify that the pcspkr module still exists on the target.

Run the following command from the platform project directory:

$ make start-target

Step 2 Log in to the system.

Use the user name root with password root.

Step 3 Verify the status of the floppy, parport, and pcspkr modules.

root@qemux86-64: ~# lsmod

The system should return the following:

Not tainted
pcspkr 2030 0 - Live 0xffffffffa0002000

The module list shows that the floppy and parport modules are no longer present and that the
pcspkr module is active now.

Step 4 Review how the pcspkr module loads.

Run the following command on your qemux86-64 target:

$ cat /usr/lib64/udev/rules.d/60-persistent-input.rules | grep pcspkr

The system should return the following:

DRIVERS=="pcspkr",ENV{.INPUT_CLASS}="spkr"

Note that the automatic loading of modules is handled by the udev infrastructure.

Step 5 Verify that the minix file system is still supported.

root@qemux86-64: ~# cat /proc/filesystems |grep minix

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

6

The system should return the following:

minix

Support for the minix file system is still available but this time it is built into the Linux kernel
image itself.

Step 6 Shut down the target.

Enter the following command in the emulator console:

root@qemux86-64: ~# halt

Kernel Configuration and Patching with Fragments Summary

In this tutorial, you learned how to use fragments to add, modify, and remove kernel options,
and how to use .bbappend file to specify the file used to maintain the kernel configuration
changes. In addition, you learned how to clean and rebuild the kernel package, and how to test
your changes on a live target.

1 Kernel Configuration and Patching with Fragments
Kernel Configuration and Patching with Fragments Summary

7

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

8

2
Kernel Configuration with

menuconfig

Kernel Configuration with menuconfig Tutorial 9

Kernel Configuration with menuconfig Tutorial

Learn about kernel configuration with menuconfig.

Overview

When you have completed this tutorial, you will:

• learn how to view existing the kernel modules on the target platform

• remove kernel modules from the existing kernel configuration

• turn an existing kernel module into a static kernel feature

• add a new kernel module

• rebuild the kernel and file system

• test your kernel updates on a target platform

Tutorial Requirements

The following procedures require a configured and built platform project, with the kernel
modules added in the Kernel Configuration and Patching with Fragments Tutorial on page 1 tutorial.

9

Kernel Configuration with menuconfig

menuconfig is a basic configuration mechanism provided by the Linux kernel build system that
provides a menu-based access to the different kernel options.

In this section, you will learn to reconfigure the Linux kernel to make some changes on the kernel
modules which are installed by default.

The changes you will make include:

• Removing the floppy and parport (parallel port) modules, assuming that they are not
necessary for the intended target.

• Turning the minix kernel module into a static kernel feature, so that its functionality is
provided by the kernel image itself.

• Adding the pcspkr (PC speaker) module.

Once complete, you will rebuild the kernel and file system, reboot the emulated target, and verify
that your changes have been applied.

Select Viewing Installed Kernel Modules on page 10 to begin the tutorial procedures.

Viewing Installed Kernel Modules

Before you make changes to the kernel configuration, review the existing kernel modules to
ensure that the configuration meets your expectations.

Viewing kernel modules is necessary to understand whether they need to be enabled or disabled
as part of your overall project requirements. In this procedure, you will verify that the floppy,
minix, and parport modules are running on the target system.

Prerequisites

The following procedure requires a configured and built platform project, with the kernel
modules added in the Kernel Configuration and Patching with Fragments Tutorial on page 1 tutorial.

Step 1 Boot the emulated quemux86-64 target that you have built in the previous sections.
a) Launch the target.

From the platform project’s directory, run the following command:

$ make start-target

b) Log in as user root, and password root.

You should have now access to the command line shell on the target.

Step 2 List the kernel modules installed on the target.

Run the following command from the target console:

root@qemux86-64:~# lsmod

The console should return the following output:

Not tainted
 parport 23894 1 parport_pc, Live 0xffffffffa0017000
 floppy 60578 0 - Live 0xffffffffa0022000

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

10

 parport_pc 18367 0 - Live 0xffffffffa0038000
 minix 29971 0 - Live 0xffffffffa0042000

This output represents the list of kernel modules loaded in the system. In this example, we will
assume that floppy and parport (parallel port) modules are not required, so we will remove
them. We will also integrate the minix module into the kernel image itself.

Step 3 Verify support for the minix file system.

Run the following command from the target console:

root@qemux86-64:~# cat /proc/filesystems |grep minix

The console should return the following output to indicate support for the minix file system:

minix

Note that since the minix module is already loaded, it is expected that the kernel supports it.

Step 4 Shutdown the emulated target.

Run the following command from the target console:

root@qemux86-64:~# shutdown now

This will cleanly shutdown the console window so you can make changes to the kernel’s
configuration.

Postrequisites

Now that you have verified the kernel modules, you must launch menuconfig to make changes
to the configuration as described in Launching menuconfig and GUI Configuration Tools on page
11.

Launching menuconfig and GUI Configuration Tools

In order to use menuconfig or one of the other available tools for kernel configuration, you must
launch them from the platform project directory.

The following procedure provides commands for launching menuconfig, along with other GUI
Linux kernel configuration tools such as xconfig and gconfig.

NOTE: To use xconfig or gconfig, listed in the following commands, you must have the
QT toolkit and QT development tools installed on your host.

For example, with a Debian-based workstation, you could use the command: sudo apt-get
install qt4-dev-tools qt4-qmake to install QT.

Prerequisites

This procedure requires a previously built platform project.

Launch the menuconfig configuration tool for the kernel.

2 Kernel Configuration with menuconfig
Launching menuconfig and GUI Configuration Tools

11

Enter one of the following commands from the platform project directory to launch the kernel
configuration menu:

Options Description

Run menuconfig in a
separate terminal
window:

$ make linux-windriver.menuconfig

Run the graphical
xconfig interface to
menuconfig:

$ make linux-windriver.xconfig

Run the graphical
gconfig interface to
menuconfig:

$ make linux-windriver.gcconfig

After a few seconds, a new terminal window appears with the kernel configuration menu.

Postrequisites

Now that menuconfig is running, you can make changes to the configuration as described in:

• Removing Kernel Modules on page 13

• Turning an Existing Kernel Module into a Static Feature on page 14

• Adding a Kernel Module on page 12

Adding a Kernel Module

Use menuconfig to add kernel modules to provide additional kernel features for your platform.

By default, miscellaneous device support is disabled. To add PC speaker support, you must
enable it.

Prerequisites

The following procedure requires that menuconfig be running from the platform project
directory as described in Launching menuconfig and GUI Configuration Tools on page 11.

Step 1 Navigate to the pcspkr module.

a) From the top kernel configuration menu, select Device Drivers > Input device support, then
press SPACE.

b) Select Miscellaneous devices, then press SPACE to enable the sub-menu.

c) Press ENTER to view the submenu.

Step 2 Set PC Speaker support as a module.

Select PC Speaker support and press SPACE to add the PC Speaker support option as a module.

The marker is now a letter M indicating that the PC Speaker support option is a module.

Step 3 Return to the main configuration window.

Select Exit three times to return to the top level list of configuration options.

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

12

Postrequisites

Once you have added a kernel module, you can continue to make kernel configuration changes
as described in Turning an Existing Kernel Module into a Static Feature on page 14 and Removing
Kernel Modules on page 13.

If you are finished making changes, you will need to save your changes and rebuild the kernel as
described in Saving the Configuration and Rebuilding the Kernel on page 14.

Removing Kernel Modules

Once you have verified that the kernel modules are enabled in the kernel, you can remove them
with menuconfig.

Prerequisites

The following procedure requires that menuconfig be running from the platform project
directory as described in Launching menuconfig and GUI Configuration Tools on page 11.

Step 1 Remove the floppy module from the kernel configuration.
a) From the top kernel configuration menu, select `Device Drivers > Block devices > Normal

floppy disk support .

Normal floppy disk support should be listed with a letter M marker indicating that it is to be
compiled as a module.

b) Press SPACE twice to remove this module from the build.

The marker is now blank indicating that the floppy module is not selected.

c) Select Exit at the bottom menu twice, using TAB or left/right arrow keys, to return to the top
level list of configuration options.

Step 2 Remove the parport module from the kernel configuration.
a) From the top kernel configuration menu, select Device Drivers > Parallel port support .

Parallel port support should be listed with a letter M marker indicating that it is to be
compiled as a module.

b) Press SPACE twice to remove this module from the build.

c) Select Exit at the bottom menu to return to the top level list of configuration options.

Postrequisites

Once you have removed a kernel module, you can continue to make kernel configuration
changes as described in Turning an Existing Kernel Module into a Static Feature on page 14 and
Adding a Kernel Module on page 12.

If you are finished making changes, you will need to save your changes and rebuild the kernel as
described in Saving the Configuration and Rebuilding the Kernel on page 14.

2 Kernel Configuration with menuconfig
Removing Kernel Modules

13

Turning an Existing Kernel Module into a Static Feature

When you are sure that a kernel module should be a permanent part of your configuration, you
can turn it into a static feature with menuconfig.

When developing and testing a platform and its kernel, kernel modules provide a means to add
and remove features with little overhead. Towards the end of the development cycle, you may
choose to make a module a static feature, which removes the module's startup and shutdown
scripts from the kernel configuration.

Prerequisites

The following procedure requires that menuconfig be running from the platform project
directory as described in Launching menuconfig and GUI Configuration Tools on page 11.

Step 1 Navigate to the minix kernel configuration option.

From the top kernel configuration menu, select File systems > Miscellaneous filesystems >
Minix file system support.

Minix file system support should be listed with a letter M marker indicating that it is to be
compiled as a module.

Step 2 Turn the minix module into a static feature.

Press SPACE once to turn it into a static kernel feature.

The marker is now an asterisk (*), indicating that the minix option is configured as a static kernel
feature.

Step 3 Return to the main configuration window.

Select Exit at the bottom menu twice, pressing TAB to return to the top level list of configuration
options.

Postrequisites

Once you have turned a kernel module into a static feature, you can continue to make kernel
configuration changes as described in Adding a Kernel Module on page 12 and Removing Kernel
Modules on page 13.

If you are finished making changes, you will need to save your changes and rebuild the kernel as
described in Saving the Configuration and Rebuilding the Kernel on page 14.

Saving the Configuration and Rebuilding the Kernel

Once you are finished making kernel configuration changes, you must save them and rebuild the
kernel to inlude the changes in your target platform image.

Prerequisites

The following procedure requires that menuconfig be running from the platform project
directory as described in Launching menuconfig and GUI Configuration Tools on page 11.

In addition, it assumes that you have made changes to the kernel configuration as described in
Adding a Kernel Module on page 12, Removing Kernel Modules on page 13, or Turning an Existing
Kernel Module into a Static Feature on page 14.

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

14

Step 1 Save the new kernel configuration.
a) From the top kernel configuration menu, select Exit.

b) When prompted to save your new configuration, select Yes to finish the configuration session.

Step 2 Rebuild the kernel image and modules.

Run the following command from the platform project directory to rebuild the kernel image and
modules:

$ make linux-windriver.rebuild

Step 3 Rebuild the root file system.

Run the following command from the platform project directory to rebuild the root file system
and update the kernel modules as necessary:

$ make

Postrequisites

At this point, the changes you made to the kernel with menuconfig are part of the platform
project build. To verify that the changes are successful, you can run them on an emulated target
as described in Testing the New Configuration on an Emulated Target on page 15.

Testing the New Configuration on an Emulated Target

Once changes made with menuconfig are part of the platform project build, you can test them on
an emulated target.

Prerequisites

The following procedure requires the kernel configuration changes made throughout this
tutorial, specifically the rebuilt kernel and file system as described in Saving the Configuration and
Rebuilding the Kernel on page 14.

Step 1 Boot the emulated target to test your new kernel configuration.
a) Launch the target.

$ make projectDir/start-target

b) After the target window boots, login as user root with password root.

Step 2 Verify the status of the floppy, parport, and pcspkr modules:

root@qemux86-64:~# lsmod

Not tainted
pcspkr 2030 0 - Live 0xffffffffa0002000

The module list shows that the floppy and parport modules are no longer present and that the
pcspkr module is active now.

Step 3 See how the pcspkr module loads.

The udev infrastructure manages automatic module loading.

2 Kernel Configuration with menuconfig
Testing the New Configuration on an Emulated Target

15

On your qemux86-64 target, type the following command:

$ cat /usr/lib64/udev/rules.d/60-persistent-input.rules | grep pcspkr

The system should return the following:

DRIVERS=="pcspkr",ENV{.INPUT_CLASS}="spkr"

Step 4 Verify that the minix file system is still supported:

root@qemux86-64:~# cat /proc/filesystems |grep minix

The system should return the following:

minix

Support for the minix file system is still available but this time it is built into the Linux kernel
image itself.

Kernel Configuration with menuconfig Summary

In this tutorial, you learned how to use menuconfig to add, modify, and remove kernel options,
and how to view installed kernel modules on a target platform. In addition, you learned how to
rebuild the kernel package, and how to test your changes on a live target.

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

16

3
Kernel Module Configuration with

make Rules

Kernel Module Configuration with make Rules Tutorial 17

Kernel Module Configuration with make Rules Tutorial

Learn about kernel module configuration using make command rules.

Overview

When you have completed this tutorial, you will:

• learn how to view existing kernel modules in your platform project build

• add a new kernel module with the make command

• remove the kernel module from the platform project

• test your kernel module changes on a target platform

Tutorial Requirements

The following procedures require a configured and built platform project, with the kernel
modules added in the Kernel Configuration and Patching with Fragments Tutorial on page 1 tutorial.

Specifically, this tutorial requires that the pcspkr module is part of the platform project build.

17

Kernel Module Configuration with make Rules

The make command provides a simplified means to add or remove selected kernel modules as
needed.

After you build your project, all configured kernel modules become available for use with the
make command, as detailed in this section.

After an initial build of the file system completes, all configured kernel modules become available
as pre-compiled binaries inside your project's working space. The first thing to do is to determine
which modules are available, and then use the make options to add or to remove selected
modules.

In this example, once you determine which kernel modules are available, you are going to add
the pcspkr module, verify that it is loaded in the target, and then remove it, using make
commands.

You may have added the pcspkr module already using the menuconfig method as described in
Kernel Configuration with menuconfig Tutorial on page 9. In this tutorial, that module will be added
as a project package and not directly as a kernel option as was done before.

Select Determining Available Kernel Modules in a Platform Project Build on page 18 to begin the
tutorial procedures.

Determining Available Kernel Modules in a Platform Project Build

Before you can use make rules to add or remove kernel modules, you must first determine
whether the module is part of your platform project build.

Because the make command can only add kernel modules that are part of the platform project
build, identifying which modules that are available will ensure that the make command will be
successful when you use it to add a module.

Determine the kernel modules available in your platform project.

Run the following command from the platform project directory to list and sort these files:

$ find bitbake_build/tmp/deploy/rpm | grep kernel-module- | \

perl -p -i -e 's/.*(kernel-module-.*)-3.*/$1/' | sort

The result will be an alphabetically sorted list of all available modules already pre-compiled and
ready to be used.

Kernel modules are packaged as individual files in the following directory:

projectDir/bitbake_build/tmp/deploy/rpm

Their file names all start with the kernel-module- prefix.

Postrequisites

Now that you have verified the available kernel modules, you can add them as described in
Adding a Kernel Module with make Rules on page 19.

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

18

Adding a Kernel Module with make Rules

Using a single make command with options, you can add a kernel module to add additional
functionality to a platform project image.

Once you have verified that a kernel module in included in your platform project as described in
Determining Available Kernel Modules in a Platform Project Build on page 18, use the following
procedure to add it to the platform project's target file system.

Step 1 Add the pcspkr module to the build.

As stated in the tutorial requirements, the following command assumes the pcspkr module is
available at this point because it was built previously in Kernel Configuration and Patching with
Fragments on page 2

a) Add the module.

$ make kernel-module-pcspkr.addpkg

b) Verify that the kernel module package has been added.

$ cat layers/local/recipes-img/images/wrlinux-image-file-system.bbappend

In this example, file-system refers to the root file system used to configure your platform
project. If you configured your platform project to use a glibc-small file system, the command
would be:

$ cat layers/local/recipes-img/images/wrlinux-image-glibc-small.bbappend

The system will return the following output, after the line that declares #### END Auto
Generated by configure ####:

END Auto Generated by configure
IMAGE_INSTALL += "kernel-module-pcspkr"

This indicates that the package will be included in the build.

c) Rebuild the root file system.

make

Step 2 Verify the pcspkr module exists on the target.
a) Launch the platform project image in an emulator.

make start-target

b) Once the emulator finishes booting, login as user root with password root.

c) Verify that the pcspkr module was added to the target.

root@qemux86-64: ~# lsmod

3 Kernel Module Configuration with make Rules
Adding a Kernel Module with make Rules

19

The system should return the following, indicating that the pcspkr module was added:

Not tainted
 pcspkr 2030 0 - Live 0xffffffffa0002000

d) See how the pcspkr module loads.

$ cat /usr/lib64/udev/rules.d/60-persistent-input.rules | grep pcspkr

The system should return the following:

DRIVERS=="pcspkr",ENV{.INPUT_CLASS}="spkr"

Wind River Linux make commands simplify the process for adding kernel modules as described
in this procedure. You can remove kernel modules in a similar manner. For additional
information, see Removing a Kernel Module with make Rules on page 20.

Removing a Kernel Module with make Rules

Using a single make command with options, you can remove a kernel module from a platform
project image.

Once you have added a kernel module in included in your platform project as described in
Adding a Kernel Module with make Rules on page 19, use the following procedure to remove it from
the platform project's target file system.

The following procedure removes the pcskpr module.

Step 1 Remove the pcspkr module package.

Run the following command in the projectDir:

$ make kernel-module-pcspkr.rmpkg

Step 2 Clean and rebuild the kernel image.

$ make kernel-module-pcspkr.clean

This updates the set of available kernel modules, removing the pcspkr module in the process.

Step 3 Verify the pcspkr module is removed from the build.
a) Launch the platform project in an emulator.

Run the following command in the projectDir:

$ make start-target

b) After the emulator finishes booting, login as user root with password root.

c) Verify that the pcspkr module is removed from the target.

Run the following command on the target:

root@qemux86-64: ~# lsmod

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

20

The system should return the following, indicating that the pcspkr module was removed:

Not tainted

Notice that the pcspkr module no longer loads or is present.

d) Shut down the target.

root@qemux86-64: halt

Wind River Linux make commands simplify the process for removing kernel modules as
described in this procedure. You can add kernel modules in a similar manner. For additional
information, see Adding a Kernel Module with make Rules on page 19.

Kernel Module Configuration with make Rules Summary

In this tutorial, you learned how to use make rules to add and remove kernel options, and how to
view the available kernel modules in your platform project. In addition, you learned how to
rebuild the kernel package, and how to test your changes on a live target.

3 Kernel Module Configuration with make Rules
Kernel Module Configuration with make Rules Summary

21

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

22

4
Creating Alternate Kernels from

kernel.org Source

Creating Alternate Kernels from kernel.org Source Tutorial 23

Creating Alternate Kernels from kernel.org Source Tutorial

Learn how to use kernel.org source to create an alternate kernel for your target platform.

Overview

When you have completed this tutorial, you will:

• update the platform project's bblayers.conf file to add development support

• create a .bbappend file to include kernel changes in your platform project build

• build the kernel

Tutorial Requirements

The following tutorial requires a configured and built platform project, as described in the Wind
River Linux Getting Started Command Line Tutorials: Creating and Configuring a Platform Project.

23

Creating Alternate Kernels from kernel.org Source

Wind River provides the capability to build arbitrary git-based kernel sources using a
development-only recipe. This recipe uses the Yocto infrastructure to clone and build directly
from the desired kernel repository, starting from a user-specified tag and complete configuration.

NOTE: Only the kernel version supplied with Wind River Linux is validated and
supported. Using any other kernel version is not covered by standard support.

This procedure is therefore suitable only for projects that are not under Wind River standard
support, such as a Proof of Concept. It is expected that this procedure will build without errors
with most BSPs, but it is unlikely the resulting kernel will boot without further configuration and
patches.

Step 1 Update the platform project's bblayers.conf file to add kernel development support.

In a previously created Wind River Linux Platform project based on a standard kernel, add
projectDir/layers/wr-kernel/kernel-dev to the file projectDir/bitbake_build/conf/bblayers.conf.
This makes the linux-windriver-custom recipe available to the build.

For example:

$ echo 'BBLAYERS += "${WRL_TOP_BUILD_DIR}/layers/wr-kernel/kernel-dev" ' \
 >> projectDir/bitbake_build/conf/bblayers.conf

Step 2 Create a .bbappend file in the local layer of your build.

$ cd projectDir/layers/local/
$ mkdir -p recipes-kernel/linux
$ cd recipes-kernel/linux/
$ echo 'FILESEXTRAPATHS := "${THISDIR}/${PN}"' >> linux-windriver-custom.bbappend

Step 3 Update the SRCREV for the kernel version being built.

NOTE: Kernels revisions from 3.16 and greater have different build rules and cannot be
built using Wind River Linux recipes.

This is the git hash of a tag in the kernel.org tree. The kernel will be cloned from the kernel.org git
repository so it is necessary to have downloading enabled in your local.conf file.

For example, to build the Linux 3.15 kernel the tag is available in the first command line. Run
each command to add all required SRCREV additions to your linux-windriver-
custom.bbappend file.

$ echo 'SRCREV = "1860e379875dfe7271c649058aeddffe5afd9d0d"' >> linux-windriver-
custom.bbappend
$ echo 'SRCREV_machine = "${SRCREV}"' >> linux-windriver-custom.bbappend
$ echo 'SRCREV_meta = "${SRCREV}"' >> linux-windriver-custom.bbappend

To obtain a SRCREV for a local repository, you must first clone the repository, as described in
Wind River Linux Kernel and BSP Developer's Guide: Custom Kernel Branch Maintenance. Once you
have a local repository, navigate to the local location of the cloned repository and enter:

$ git whatchanged kernel_branch

The output will provide the SRCREV for the kernel revision in the branch.

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

24

Step 4 Make the recipe compatible with your machine.

$ echo 'COMPATIBLE_MACHINE = "${MACHINE}"' >> linux-windriver-custom.bbappend

Step 5 Add kernel-specific configuration and patches.

When building a particular kernel version, you will also need to add kernel configuration and
patches that are specific to the new kernel version. These additional files can be placed in the
local layer recipe directory you have just created.

For example, to add a config/defconfig fragment for the board to the SRC_URI:

$ mkdir -p linux-windriver-custom
$ cp /path_to_my_custom_defconfig linux-windriver-custom/defconfig
$ echo 'SRC_URI += " file://defconfig"' >> linux-windriver-custom.bbappend

Step 6 Optionally, add the location of the locally cloned kernel repository if you plan to build from a
local git repository.

$ echo 'SRC_URI = "git:///path_to_local_git_repository/
linux.git;protocol=file;nocheckout=1"' >> linux-windriver-custom.bbappend

Once all additions are made to the linux-windriver-custom.bbappend file, it should contain the
following content:

$ cat linux-windriver-custom.bbappend

FILESEXTRAPATHS := "${THISDIR}/${PN}"
COMPATIBLE_MACHINE = "${MACHINE}"
LINUX_VERSION = "3.15"
SRCREV = "1860e379875dfe7271c649058aeddffe5afd9d0d"
SRCREV_machine = "${SRCREV}"
SRCREV_meta = "${SRCREV}"
SRC_URI += " file://defconfig"

If you are using a local git repository to build your kernel, the file will also include the following
line:

SRC_URI = "git:///path_to_local_git_repository/linux.git;protocol=file;nocheckout=1"

Step 7 Move to the root of your project and edit your local.conf file.

$ cd ../../../..
$ vi local.conf

Change your PREFERRED_PROVIDER_virtual/kernel_BSP_name= "linux-windriver" setting to
refer to the linux-windriver-custom recipe, and save the file. For example:

PREFERRED_PROVIDER_virtual/kernel_qemuppc = "linux-windriver-custom"

NOTE: For CGL kernels you must add a flag in the local.conf file by adding the following
line: KERNEL_FEATURES_CLEAR="t"

Step 8 Build the kernel.

Run the following command from the top-level folder in the projectDir:

$ make linux-windriver-custom

4 Creating Alternate Kernels from kernel.org Source
Creating Alternate Kernels from kernel.org Source Tutorial

25

If your kernel is compatible, you can build it into your file system image using:

$ make

NOTE: This procedure only replaces the kernel and not the file system components. The
kernel-headers package that is exported to the SDK sysroot remains unchanged.

Creating Alternate Kernels from kernel.org Source Summary

In this tutorial, you learned how to update a platform project's bblayers.conf file to add
development support. In addition, you learned how to create a custom kernel .bbappend file and
update it to include all of the requirements necessary for making it possible for the new kernel to
build successfully in your platform project.

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

26

5
Exporting Custom Kernel Headers

Exporting Custom Kernel Headers to the Sysroot Tutorial 27

Exporting Custom Kernel Headers to the Sysroot Tutorial

Learn how to export custom kernel headers to the sysroot for use in cross-compiling applications.

Overview

When you have completed this tutorial, you will:

• learn how to unpack the Linux kernel and locate the source directory

• create a test file header

• commit the file to the kernel git repository

• update the platform project layers/local/conf/layer.conf file to include the new file header

• add files or directories to the exported source

• rebuild the kernel to include the custom header changes.

Tutorial Requirements

To complete this tutorial, you require a previously configured and built platform project. For
additional information on creating a platform project, see Wind River Linux Getting Started
Command Line Tutorials: Creating and Configuring a Platform Project.

27

Exporting Custom Kernel Headers to the Sysroot

It is possible to export custom kernel headers for application development cross-compilation
using a built-in task for the Linux kernel.

The Wind River Linux kernel includes the linux-windriver.install_kernel_headers task, which
enables developers to export their custom kernel headers to the sysroot for use in cross-compiling
user space code. This task is provided by default and does not require any specific platform
project configuration option. This task runs after linux-windriver.do_install() and before linux-
windriver.do_populate_sysroot. Any header files and directories listed in the global variable
KERNEL_INSTALL_HEADER are copied to the sysroot.

Each entry in KERNEL_INSTALL_HEADER is expected to exist in the Linux kernel source
include/ directory. If a file already exists in the destination, the build system will not overwrite it,
but instead issue a warning. For example, to include a header file named myfile.h, the file must
exist in the projectDir/build/linux-windriver/linux/include directory, or a subdirectory of it.

The Adding a File or Directory to be Exported when Rebuilding a Kernel on page 29 tutorial topic
provides examples for using add KERNEL_INSTALL_HEADER_append.

To begin the tutorial, select Exporting Custom Kernel Headers on page 28.

Exporting Custom Kernel Headers

Use this procedure to export custom kernel headers for application development cross-
compilation.

This procedure requires that any custom kernel header files that you want to export be located in
the projectDir/build/linux-windriver/linux/include directory or a subdirectory. For additional
information, see Exporting Custom Kernel Headers to the Sysroot on page 28.

Step 1 Unpack the Linux kernel.

Run the following command in the root of the projectDir.

$ make linux-windriver.patch

Step 2 Navigate to the source directory of the kernel build.

$ cd build/linux-windriver/linux

Step 3 Optionally create a file to test this procedure.

If you do not have a file in the projectDir/build/linux-windriver/linux/include directory, you can
use the following line to create one for testing purposes:

$ echo "#define my file" > include/myfile.h

Step 4 Add and commit your file to the git repository for the kernel.

$ git add include/myfile.h
$ git commit -m "new #define my file"

For the commit message, you can enter anything you like, specific to your custom header file.

Step 5 Open the projectDir/layers/local/conf/layer.conf file in a text editor.

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

28

Step 6 Add the header file to the projectDir/layers/local/conf/layer.conf file and save the file.

$ KERNEL_INSTALL_HEADER_append += "myfile.h"

This will include your custom header file in the build. For additional information on adding
header files, see Adding a File or Directory to be Exported when Rebuilding a Kernel on page 29.

Step 7 Navigate back to the project directory.

$ cd ..

Step 8 Rebuild the kernel:

$ make linux-windriver

This can take some time to complete. When it finishes, your custom header file will be located in
the projectDir/bitbake_build/tmp/sysroots/BSP_name/usr/include directory.

For a qemux86-64 BSP, the path would be projectDir/bitbake_build/tmp/sysroots/
qemux86-64/usr/include/myfile.h. This places your custom header file in the appropriate
directory for user space cross-compiling.

Adding a File or Directory to be Exported when Rebuilding a Kernel

Append files or directories to the KERNEL_INSTALL_HEADER variable each time the kernel is
rebuilt as shown in these examples.

Prerequisites

This procedure is a supplement to Exporting Custom Kernel Headers on page 28.

Each entry in the KERNEL_INSTALL_HEADER variable is expected to exist in the Linux kernel
source include/ directory. To add a file or directory to be exported each time you rebuild the
kernel, use KERNEL_INSTALL_HEADER_append to add to the variable as illustrated in the
following example.

This variable is not configuration file-specific, and can be added to any of your layer
configuration files, such as

projectDir/layers/local/conf/layer.conf

Step 1 Open the projectDir/layers/local/conf/layer.conf file in a text editor.

Step 2 Update the KERNEL_INSTALL_HEADER variable.

• To add a single file, such as myfile.h:

KERNEL_INSTALL_HEADER_append += "myfiles/myfile.h"

• To add all files in a directory:

KERNEL_INSTALL_HEADER_append += "myfiles"

Step 3 Save the file.

5 Exporting Custom Kernel Headers
Adding a File or Directory to be Exported when Rebuilding a Kernel

29

Exporting Custom Kernel Headers Summary

In this tutorial, you learned how to export custom kernel headers and how to use the
add KERNEL_INSTALL_HEADER_append to include additional files and directories as part of the
exported content.

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

30

A
Wind River Education Resources

Wind River Education Services offers customized on-site and self-paced courses.

If you need a more detailed learning experience than is provided by these tutorials, you can purchase
instructor-led courses on a wide range of Wind River Linux subjects from Wind River Education Services.

Courses are offered at your location or over the internet by professional instructors with years of
experience working with Wind River Linux, and tailored to cover exactly the topics you choose.

See http://windriver.com/education/ for more information.

31

http://windriver.com/education/

Wind River® Linux
Wind River Linux Kernel Command-Line Tutorials, 7.0

32

	Contents
	Kernel Configuration and Patching with Fragments
	Kernel Configuration and Patching with Fragments Tutorial
	Kernel Configuration and Patching with Fragments
	Populate the Local Layer with the Required Subdirectories
	Create the Kernel's BitBake Append (.bbappend) File
	Create the Kernel's Configuration Fragment
	Clean up the Linux Kernel Package and Optionally Configure the Package
	Rebuild the Linux Kernel Package and File System
	Run the Emulated Target
	Kernel Configuration and Patching with Fragments Summary

	Kernel Configuration with menuconfig
	Kernel Configuration with menuconfig Tutorial
	Kernel Configuration with menuconfig
	Viewing Installed Kernel Modules
	Launching menuconfig and GUI Configuration Tools
	Adding a Kernel Module
	Removing Kernel Modules
	Turning an Existing Kernel Module into a Static Feature
	Saving the Configuration and Rebuilding the Kernel
	Testing the New Configuration on an Emulated Target
	Kernel Configuration with menuconfig Summary

	Kernel Module Configuration with make Rules
	Kernel Module Configuration with make Rules Tutorial
	Kernel Module Configuration with make Rules
	Determining Available Kernel Modules in a Platform Project Build
	Adding a Kernel Module with make Rules
	Removing a Kernel Module with make Rules
	Kernel Module Configuration with make Rules Summary

	Creating Alternate Kernels from kernel.org Source
	Creating Alternate Kernels from kernel.org Source Tutorial
	Creating Alternate Kernels from kernel.org Source
	Creating Alternate Kernels from kernel.org Source Summary

	Exporting Custom Kernel Headers
	Exporting Custom Kernel Headers to the Sysroot Tutorial
	Exporting Custom Kernel Headers to the Sysroot
	Exporting Custom Kernel Headers
	Adding a File or Directory to be Exported when Rebuilding a Kernel
	Exporting Custom Kernel Headers Summary

	Wind River Education Resources

