

© 2013 Wind River Systems, Inc

Creating Layers Lab

Creating Layers Lab

Objective

In this lab you will learn how to capture common project settings into a custom

bitbake layer which can be reused in multiple projects.

NOTE: This lab should take approximately 60 minutes.

Lab Overview

The content that makes up your Wind River Linux platform project is delivered

through a collection of layers. Most of the layers included in standard projects

are provided by the Wind River Linux product and common to every project.

Every project also comes equipped with a built-in local layer, which can be used

to develop custom content unique to your project. Platforms can be further

enhanced by including additional layers.

Throughout this training, you have customized your platform project in a number

of different ways. In most cases, these changes have been recorded in the local

layer, where these customizations can survive for the life of your project, but are

only available to that particular project.

Customizations can be shared with other platform projects by placing them into

an external custom layer. This lab will walk you through the creation of a new

layer, as well as populating it with some common customizations.

Creating the Layer Directory Structure

A layer is nothing more than a directory structure populated with a collection of

configuration files and other resources needed to build software. Creating a new layer is

simply a matter of creating directories and files in the places the build system expects to

find them.

In this section, you will create the skeleton of a new layer, which will be populated with

content in subsequent sections.

Note that some layers contain additional elements beyond those which are discussed in

this lab; these exercises only touch on the elements commonly used in custom application

layers.

1. Create the top level directory for your layer.

mkdir /home/wruser/MyLayer

NOTE: Layers can reside anywhere in your file system.

 The top-level directory name (in this case, MyLayer) should match the

layer name.

 Layer names can be anything you like. In the Yocto Project

community, it is a common practice to use the prefix meta-.

2. Execute the following command to navigate to the layer.

cd /home/wruser/MyLayer

3. Execute the following command to create the directory conf, which will contain the

layer.conf file. Other configuration files can also be maintained here, as well.

mkdir conf

4. Execute the following command to create the directory downloads. If your layer

provides packages, then local copies of the archives associated with the packages (if

any) will be maintained here.

mkdir downloads

5. Execute the following command to create the directory recipes-custom, which will

contain the following:

 Recipes: provide configuration information, commonly used to provide

instructions for building a particular package.

 Append files: provide the ability to extend existing recipes. This capability

enables your layer to add to, or modify aspects of, an existing recipe, without

having to copy and modify the original recipe.

Note that the naming of this directory is somewhat arbitrary; the only requirement is

that the name begins with the prefix recipes-. It’s fairly common for layers to have

multiple recipe directories to main logical groupings of content.

mkdir recipes-custom

6. Lastly, execute the following command to create a templates/feature directory

structure. The feature directory will contain Wind River Linux templates provided by

your layer, if any.

mkdir -p templates/feature

7. Now create the layers.conf file in the conf directory. This file is a requirement for all

layers; without it the bitbake system will not recognize your layer.

Most layer.conf files contain many common elements. As such, when creating a new

layer, it is common practice to copy an existing layer.conf file, making minor

customizations needed to match the layer name. This file can be modified thereafter,

as needed.

For this step, copy the layer.conf from the local layer of an existing project; this can

be the standard project included with the lab environment (refer to the Getting Started

lab to identify where this project is located), or it can be one of the projects you’ve

created in a previous lab.

cp $HOME/myplatform/layers/local/conf/layer.conf conf

8. Replace any instances of the string local within your new layer.conf with the name of

your layer, MyLayer.

9. Take a moment to acquaint yourself with the contents of your layer.conf file, which

should now resemble the following:

We have a conf and classes directory, add to BBPATH

BBPATH := "${LAYERDIR}:${BBPATH}"

We have a packages directory, add to BBFILES

BBFILES := "${BBFILES} ${LAYERDIR}/recipes-*/*/*.bb \

 ${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "MyLayer"

BBFILE_PATTERN_MyLayer := "^${LAYERDIR}/"

BBFILE_PRIORITY_MyLayer = "10"

Add scripts to PATH

PATH := "${PATH}:${LAYERDIR}/scripts"

Add a directory to allow local changelist.xml changes

WRL_CHANGELIST_PATH += "${LAYERDIR}/conf/image_final"

Add a directory to allow local fs_final*.sh script changes

WRL_FS_FINAL_PATH += "${LAYERDIR}/conf/image_final"

We have a pre-populated downloads directory, add to PREMIRR…

PREMIRRORS_append := "\

 git://.*/.* file://${LAYERDIR}/downloads/ \n \

 git://.*/.* git://${LAYERDIR}/git/BASENAME;protocol=file…

 svn://.*/.* file://${LAYERDIR}/downloads/ \n \

 ftp://.*/.* file://${LAYERDIR}/downloads/ \n \

 http://.*/.* file://${LAYERDIR}/downloads/ \n \

 https://.*/.* file://${LAYERDIR}/downloads/ \n"

The elements of this file are interpreted as follows:

 The BBPATH variable is used by bitbake to maintain a list of directories to

search for crucial information (like layer.conf files). Layers augment this variable

in the manner shown to make themselves known to bitbake.

 The BBFILES variable is used by bitbake to maintain a list of recipes (*.bb) and

append files (*.bbappend). Layers manipulate this variable as shown to publish

any recipes or append files they provide. From studying this expression, you will

see that this is where the requirement for the recipes- prefix, mentioned

previously, comes from. Although you are free to modify this expression, you

shouldn’t, because this naming scheme is a standard Yocto Project convention.

 BBFILE_COLLECTIONS maintains a list of layers. Therefore, this is where

you declare the name for your layer.

 BBFILE_PATTERN_MyLayer is a layer-specific variable specifying a regular

expression which bitbake can use to identify files (in BBFILES) belonging to

your layer. In this instance, the standard expression provided matches any file

beginning with the layer directory, ${LAYERDIR}.

 BBFILE_PRIORITY_MyLayer is another layer-specific variable specifying a

priority which bitbake assigns to your layer. Bitbake uses layer priorities to

determine the order in which to find recipes and other resources provided by your

layer. Priorities are used to resolve ambiguities when multiple layers contain

overlapping resources.

 The augmentation of PATH is optional, and meaningful only if your layer has a

scripts directory containing utilities to be run on the host.

 WRL_CHANGELIST_PATH and WRL_FS_FINAL_PATH enable

fs_final.sh and changelist.xml file system finalizers to be offered by your layer.

This functionality is provided by the Wind River Linux image classes, which are

enabled by default when using the Wind River Linux configure script to set up

your build environment.

 PREMIRRORS maintains a list of directories containing source archives, which

bitbake can use in lieu of downloading over the network. Layers augment this

variable in the manner shown to enable such archives to be found in the

downloads directory, in a variety of formats.

NOTE: Although providing a README file in your layer’s top-level directory is not

a technical necessity, Yocto Project compliance requires the presence of such

a file to document your layer’s purpose and usage instructions.

For examples, refer to any of the standard product layers which can be found

in any configured build environment; for example,

/home/wruser/myplatform/layers/wr-base/README.

Your layer, although devoid of any actual content, is now technically complete, and is

ready to be included into projects. In the exercises that follow, you will populate your

layer with content related to some of the common layer use cases.

Using Your Layer

In this section, you will add the layer you created in the previous section to a new

platform project. Throughout the rest of the lab, you can use this project to incrementally

verify that your layer settings are taking effect. Take the time to open a new terminal

window so that you can maintain the shell from the previous section in your layer

directory, and one in your new build environment.

10. In the new shell, create a directory for your new project and switch into this directory.

mkdir /home/wruser/layer_test_prj

cd /home/wruser/layer_test_prj

11. Configure a new build environment. The settings for --enable-board, --enable-

kernel, and --enable-rootfs should match the target included in your lab environment

to improve build times; you can use the $BSP, $KERNEL, and $ROOTFS variables

to specify these. In addition to these three arguments, you should include:

 --with-layer=/home/wruser/MyLayer to include your custom layer

 --with-sstate-dir=/Labs/sstate to speed up the build

$WIND_BASE/wrlinux/configure --enable-board=$BSP \

 --enable-kernel=$KERNEL \

 --enable-rootfs=$ROOTFS \

 --with-layer=/home/wruser/MyLayer \

 --with-sstate-dir=/Labs/sstate

12. Examine the contents of bitbake_build/conf/bblayers.conf and notice that a

reference to your layer is contained within. Since your layer is essentially empty at

this point, it will not exert any real influence over the build environment yet. In the

sections that follow, you will build up your layer and observe the impact it has on

projects that include it.

NOTE: This section illustrates how to add your layer to a new platform project. You

can also add layers to existing projects. This is covered in the Reconfiguring

Projects lab.

Adding Packages

You will undoubtedly need to add packages or applications to your projects at one point

or another. In the Integrating Packages lab, you learned how to integrate upstream and

in-house applications into your build environment, using the project’s local layer. In this

section, you will embed a package which is known to build properly into your new

custom layer.

The package you will add to your layer is called figlet. It contains the following parts,

which you will find common to most packages. These can all be found in the

/Labs/LayersAndTemplates directory.

 An archive, figlet-2.2.5.tar.gz, containing the upstream source for this package.

Upstream packages are commonly delivered in the form of an archive. Package

source can also be delivered as a source tree, or via an SCM like git or

subversion.

 A recipe, figlet_2.2.5.bb, which provides the bitbake instructions for building the

package. A recipe is always required in order to build a package.

 A patch, makefile-integration.patch, which must be applied to the upstream

source prior to building, in order for the package to build properly. Patches aren’t

always required; some upstream source is able to build cleanly without the need

for patching. In this particular case, however, a patch is required.

For this package to be represented properly, all components must be included in the

proper locations within your layer.

NOTE: Be sure to perform all steps in your layer directory, unless otherwise noted.

13. Because the source is delivered as an archive, the archive must be copied into your

layer’s downloads directory.

cp /Labs/LayersAndTemplates/figlet-2.2.5.tar.gz downloads

14. Next, create a package-specific directory within your layer’s recipes-custom

directory. Here, you will place the package recipe. Other components needed to build

figlet will be rooted here, as well.

mkdir recipes-custom/figlet

NOTE: There is no technical requirement to name this directory after your package. In

fact, you could have a single directory containing all of the configuration

information for all of the packages provided by your layer. From a

manageability standpoint, however, it makes good sense keep your recipes

organized in directories named after their associated packages.

15. Execute the following command to copy the recipe into this newly created directory.

cp /Labs/LayersAndTemplates/figlet_2.2.5.bb recipes-custom/figlet

16. Execute the following command to create the subdirectory files which will be used to

additional resources needed to build the package, such as:

 Patches to be applied to the source prior to building, if required

 Package source tree, if no archive is provided

mkdir recipes-custom/figlet/files

NOTE: The name files is a requirement in this case. Bitbake will search this

subdirectory for patches and other resources related to the package.

17. Execute the following command to copy the needed patch file into the files

subdirectory.

cp /Labs/LayersAndTemplates/makefile-integration.patch \

 recipes-custom/figlet/files

18. Now your layer contains sufficient information to build and include figlet into your

image. Verify that figlet is buildable within the project you created in the previous

section. Switch to your project shell, and issue the following:

make -C build figlet

This will build the figlet package. Assuming this succeeds, this is sufficient to prove

that the figlet package has been properly integrated into your layer.

19. Now, wire your layer to automatically include the figlet package into the image. Back

in your layer shell, add the following line to the file conf/layer.conf:

IMAGE_INSTALL_append += "figlet"

20. In your project shell, execute the following command to build the image.

make

21. When the build completes, you the figlet application is built into your target file

system. Execute the following command to verify that the target file system includes

the figlet binary.

find export/dist –name figlet

Modifying File System Content

As you saw in the Building and Customizing a Wind River Linux Platform lab, there are a

couple of mechanisms provided by Wind River Linux which allow direct manipulation of

the target file system content: changelist.xml, and fs_final.sh.

In this section, you will integrate both into your custom layer. This will give you some

insight into the naming requirements for these files, as well as how to deal with multiple

changelist.xml files.

Perform this section in your layer directory.

22. Execute the following command to create a new subdirectory called image_final

within your layer’s conf directory. This is the standard place searched in layers for

changelist.xml and fs_final.sh files.

mkdir conf/image_final

23. The directory /Labs/LayersAndTemplates contains two scripts (motd.sh and

fifo.sh). Both scripts are designed to be run as fs_final scripts at file system

finalization time. Execute the following command to copy these files into the

image_final subdirectory, observing the following naming requirements:

 Files must begin with the prefix fs_final.

 Files must end with the suffix .sh.

This naming scheme is required in order for the system to find your scripts.

cp /Labs/LayersAndTemplates/motd.sh

conf/image_final/fs_final_motd.sh

cp /Labs/LayersAndTemplates/fifo.sh

conf/image_final/fs_final_fifo.sh

24. Test the new additions to your layer by switching to your project shell and building

the project image which you are using to test your layer.

make

25. Execute the following command to verify that the /etc/motd in the target file system

contains the modified text.

cat export/dist/etc/motd

Welcome to your Wind River Linux 5 image

26. Also verify that a FIFO node called mypipe exists in the root directory (export/dist),

with mode 0777. To verify this effectively, you will need to enter the fake root

environment, as outlined in the Building and Customizing a Wind River Linux

Platform lab. The procedure is quickly recapped below:

scripts/fakestart.sh

ls –l export/dist/mypipe

When done, leave the fake root environment using the exit command.

27. Switch back to your layer shell and turn your attention to the changelist.xml files. In

/Labs/LayersAndTemplates, you will find two files, changelist_login_msg.xml and

changelist_readme.xml. Because there can be only one changelist.xml file in a layer,

you must learn how to merge these files, should you ever need to. Begin by copying

the first file into the conf/image_final directory.

cp /Labs/LayersAndTemplates/changelist_login_msg.xml \

 conf/image_final/changelist.xml

28. Now, take a look at the second file, changelist_readme.xml.

<?xml version="1.0" encoding="UTF-8"?>

<layout_change_list version="1">

<change_list>

<cl action="addfile" name="/root/README.txt" \

 source="/Labs/LayersAndTemplates/README.txt">

</change_list>

</layout_change_list>

To merge this file, you will need to copy only the cl directive from this file into the

main changelist.xml. When done, conf/image_final/changelist.xml should resemble

the following.

NOTE: The command in a changelist.xml file should not be split across lines. It is

only done in this document to fit the page.

<?xml version="1.0" encoding="UTF-8"?>

<layout_change_list version="1">

<change_list>

<cl action="addfile" name="/root/.profile" \

 source="/Labs/LayersAndTemplates/dotprofile">

<cl action="addfile" name="/root/README.txt" \

 source="/Labs/LayersAndTemplates/README.txt">

</change_list>

</layout_change_list>

29. Save the file and test the new additions to your layer by rebuilding the project image

which you are using to test your layer. Verify that the files /root/README.txt and

/root/.profile exist in the target file system.

Kernel Configuration and Patching

The Configuring and Patching the Kernel lab walked you through the integration of

kernel patches and configuration fragments into your build environment’s local layer. In

this section, you will learn how to replicate these features in your new custom layer.

The following components are required to patch and/or configure the kernel:

 a feature description (.scc) file which pulls in configuration fragments and/or

patches

 if you are configuring the kernel, a configuration fragment which specifies kernel

configurations settings

 if you are patching the kernel, a patch or set of patches

Perform this section in your layer directory.

30. Kernel-related configuration requires a bit of additional directory infrastructure in

your layer, just like packages do. Create a kernel-specific directory within your layer,

which will house the append file you’re going to create, as well as all the kernel-

related configuration you want to include.

mkdir -p recipes-kernel/linux/linux-windriver-3.4

The components of this new path represent the following:

 the new directory recipes-kernel, parallel to the recipes-custom used in the

previous section. It’s not required to keep kernel-related configuration separated

like this. In truth, you could put your kernel configuration into recipes-custom if

you really wanted to. But because the kernel is so special, it is common practice

to stash kernel-related configuration into a separate subdirectory called recipes-

kernel.

 the directory linux, which provides a container for the append file you’re going to

create. As with packages, the name of this directory component is not significant

as far as the build system is concerned. But from a manageability standpoint,

linux is the name commonly used for kernel configuration.

 the directory linux-windriver-3.4, which will contain the kernel-related material

you want to include in your layer. The name of this component must be matched

to the append file you’re going to create which, in turn, is matched with the recipe

being used for the target kernel.

31. Now execute the following command to copy the kernel material into the linux-

windriver-3.4 directory: a patch which implements a large startup banner, as well as

a configuration fragment which sets a default message for the banner.

cp /Labs/LayersAndTemplates/0001-Implemented-big-boot-

banner.patch \

 /Labs/LayersAndTemplates/banner.cfg \

 recipes-kernel/linux/linux-windriver-3.4

32. In that same directory, create a feature description file, banner.scc, which pulls in the

configuration fragment and patch.

kconf non-hardware banner.cfg

patch 0001-Implemented-big-boot-banner.patch

33. Finally, in the directory linux, create the append file. This file will extend the kernel

recipe, adding a reference to the feature description created in the previous step. This

is a name-sensitive component, and must be named linux-windriver_3.4.bbappend.

Notice the following:

 the naming for recipes (and append files) separates the name and version with an

underscore (_) character rather than a hyphen (-)

 linux-windriver is the formal package name for the Wind River Linux kernel

 the version, 3.4, must match the version of the kernel being used in your product

 the file must have a .bbappend suffix. If you instead use a suffix of .bb, then the

contents of your file will clobber the original kernel recipe!

The contents of this file should resemble the following:

EXTRA_KERNEL_SRC_URI += "file://banner.scc"

EXTRA_KERNEL_FILES_append := "${THISDIR}/${PN}-${PV}:"

This performs the following:

 adds banner.scc to the list of components which the kernel build system will look

for (as maintained by the build variable EXTRA_KERNEL_SRC_URI)

 extends the search path of the kernel build system by adding to the

EXTRA_KERNEL_FILES variable. ${THISDIR} expands to the directory

containing the append file, while ${PN} and ${PV} expand to the package name

and version, respectively (thus evaluating to linux-windriver-3.4).

34. Now, test the new additions to your layer by invoking the kernel configure target in

your project shell.

make –C build linux-windriver.configure

Examine the kernel configuration file, found at build/linux-windriver-3.4-r0/linux-

$BSP-$KERNEL-build/.config (the exact path will depend on the board and kernel

selection). Within, you should find the two settings from banner.cfg. These

configuration settings are not part of the standard kernel settings and will only appear

if your configuration fragment was applied successfully.

CONFIG_BANNER=y

CONFIG_BANNER_TEXT="Wind River Linux"

Also verify that the patch applied by checking for the presence of a file called

banner.c in the build/linux-windriver-3.4-r0/linux/init directory. This file is not

part of the standard kernel source; rather it is provided by the patch you added earlier

in this section.

To fully test the feature, you should:

 Rebuild the kernel

 Rebuild your image

 Deploy the image to the target

 Boot the target

Do this if time permits; rebuilding the kernel can take some time.

This concludes the lab. Do not proceed.

