
Confidential © Arm 2017 Limited - PJDOC- 2086156763-75

mbed Cloud Edge
architecture

Karthik Ranjan

Jarkko Jaakola

Janne Kiiskilä

2017-09-13

Taipei, Taiwan

Integration camp

Confidential © Arm 2017 Limited

Mbed Cloud Edge

Product re-cap

Confidential © Arm 2017 Limited 3

Mbed Cloud Edge – Product Re-cap

Mbed Cloud Edge offers means to bridge devices to mbed Cloud.

For example

- Connecting existing legacy devices to mbed Cloud.

- Connecting non-IP devices to mbed Cloud (as mbed Cloud Client requires IP
connectivity), for example Bluetooth LE.

- Connecting smaller-footprint devices to mbed Cloud that do not have enough
capabilities to run the full mbed Cloud Client, for example some 6lowPan / Thread end-
point.

Capability to do firmware update to mbed Cloud Edge itself.

Confidential © Arm 2017 Limited 4

Working together: Advantech and Arm work split
Technology Deliverables

A
R

M

• Security between gateway and Mbed Cloud (TLS, certificate)

• Reporting of any errors in either the protocol translation interface to
the legacy interface or connection to Mbed Cloud

• Maintaining & reporting status of connectivity to Mbed Cloud

• Mbed Cloud Client + example
• Mbed Cloud Client documentation
• Mbed Cloud Client Linux FW Update
• Mbed Cloud Edge code
• Mbed Cloud Edge Protocol Translator

API

A
d

va
n

te
ch

• Onboard and pairing of LoRA devices to the gateway (protocol
implementation)

• Protocol interface implementation between LoRA and Mbed Cloud
Edge

• Local control and management of LoRA

• Offline data store & forward of LoRA endpoints

• Monitoring status of protocol translation interface and connectivity
to Mbed Cloud, including error reporting to the cloud

• Failover handling to toggle (1) local control (2) store & forward

• Factory provision keys into the gateway

• Core gateway security













• Hardware and working SW for it.
• Essentially the WISE-3610 SDK.

• Protocol Translator implementation
against Advantech’s LoRa module

Covered in
Workshop

Confidential © Arm 2017 Limited 5

2nd release available – 0.1.1

First releases have now been made available.

It’s by no means perfect or ready to production quality yet.

This is still work in-progress, but – it should nevertheless enable the PT development work
for connected devices.

CHANGELOG in the repository has lots of details.

You can:
- Get mbed Cloud Edge itself to the mbed Cloud
- You can register PT
- You can add devices to PT and mbed Cloud
- You can GET and PUT values to devices.

Known issues:
- POST/DELETE missing.
- Observe device resources yet, but you can observe

resources for that device via the mbed Cloud Edge
device itself.

- Endpoint_type can’t be used via REST API yet.
- There are issues with high volume device creation.
- Configuration is not simple or centralized yet.
- Moving end points not supported yet.

Confidential © Arm 2017 Limited

mbed Cloud Edge

High level architecture

Confidential © Arm 2017 Limited 7

Architecture
overview
picture

5 main modules

1. Mbed Cloud
2. Mbed Cloud Edge Core

• Which includes Mbed Cloud
Client

3. Protocol API
4. Protocol Translator
5. End points/devices.

Confidential © Arm 2017 Limited 8

Architecture overview

The full system of mbed Cloud Edge contains five main components

• Mbed Cloud

– As current mbed Cloud but has extended support to handle and maintain mbed Cloud Edge mediated devices.

– The 1st required changes are already in mbed Cloud production.

• Mbed Cloud Edge Core

– Implements the communication between protocol translator and mbed Cloud.

– Implementation is based on mbed Cloud Client, it is an extended version of it.

▪ This mbed Cloud Client has the full Cloud Client capabilities.

▪ Firmware update of the mbed Cloud Edge product itself is done via the normal mbed Cloud Client
Firmware update.

▪ In similar manner also the production certificate injection is done via the Factory provisioning mbed Cloud
Client uses – there is nothing mbed Cloud Edge specific about those aspects.

Confidential © Arm 2017 Limited 9

Architecture overview continued
• Protocol translator Application Programming Interface (API)

– Mbed Cloud Edge provides protocol translator API and an example client.

– Does not provide tools or means to handle connectivity to endpoint devices.

▪ Those are always customer connectivity specific.

– Provides API to device resources as IPSO Smart Objects data structures.

• Protocol translator implementation

– Customers need to implement their own endpoint device handling, i.e. connectivity to devices.

– PT must also map device resources into IPSO Smart Objects,
for example thermostats have a pre-defined IPSO Smart Object 3300.

• Non-LWM2M endpoint device(s)

– These are external connected devices, e.g. LoRa, BLE, BACNet, narrow-band IOT, etc.

– Customer is responsible of the connectivity to mbed Cloud Edge device.

Confidential © Arm 2017 Limited 10

Architecture overview
Components

• mbed Cloud Edge
service and
protocol
translator
communicates
with full duplex
local socket
connection.

• Operating system
must provide
some hard
dependencies*
for mbed Cloud
Edge.

* Refer to release notes & slide internal components.

Confidential © Arm 2017 Limited 11

Architecture overview
Components

• Mbed Cloud Client
to Mbed Cloud
uses COAP over
TLS/DTLS.

• Registration message
link format has Edge
proprietary
extension!

• ARM does not
handle the
connectivity for the
devices – PT must
implement that.

Confidential © Arm 2017 Limited 12

Internal components
Protocol translator API

• pt-api (client side)

• Provides a set of functions to initiate actions on
mbed Cloud Edge. Callbacks are used to
communicate back to customer code.

• Provides RPC interface to protocol translator that
mbed Cloud Edge service can call.

• Eventloop! Callback code must not block
processing.

• protocol-api (Edge Core)

• Runs in libevents event loop.

• Provides RPC interface to mbed Cloud Edge that
protocol translator can call.

Confidential © Arm 2017 Limited 13

Internal components

• Dependencies

• libevent 2.x for socket communication

• frstrm for framing messages

• jansson

• jsonrpc (included as source) for message format

• Common

• Eventloop based PRC framework, tracks sent
messages and corresponding responses.

Confidential © Arm 2017 Limited 14

Internal components

• mbed Cloud Client - Edge version

• Implemented in mbed Cloud Client and mbed
Cloud Edge projects.

• Changes also in mbed Cloud Client to handle the
mbed Cloud Edge special cases.

• pt-client and device connectivity

• Customer implemented part of protocol
translator.

• Implements the callbacks for protocol translator
and mbed Cloud Edge services protocol API.

• The customer callbacks will offload the
processing and control to implementation
responsible of communicating the state to
endpoint devices.

Confidential © Arm 2017 Limited

mbed Cloud Edge Core

Confidential © Arm 2017 Limited 16

mbed Cloud Edge Core

Provides an API for protocol translators to call. Provided JSON-RPC API is not directly
visible from protocol translators (hidden behind C API).

Similar kind of messaging queue and message handling is utilized in mbed Cloud Edge
Core as in the protocol translator API.

The internal JSON message is parsed and handled in the mbed Cloud Edge Core. The
resulting translation to mbed Cloud Client datastructures is implemented in the Core.

Mbed Cloud Client is an important part of the mbed Cloud Edge service as it handles all
the connectivity and data passing to mbed Cloud.

NOTE: mbed Cloud Edge Core code is something that should just work out of the box
apart from configuration by customers (certificates, credentials, Cloud Edge resources,
etc).

Confidential © Arm 2017 Limited 17

mbed Cloud Edge

Operations that mbed Cloud Edge service MUST support

• From mbed Cloud REST API it must be possible to GET the values from endpoint devices.

– Protocol translators must write values to mbed Cloud Edge service. Core will store values in mbed Cloud
Client structures.

• From mbed Cloud REST API it must be possible to observe the values (GET) from endpoint devices.

– All protocol translated endpoint resources are observable. The mbed Cloud Client and mDS handle the
observations.

▪ NOTE! Right now in 1st version the observations for devices do not work yet, they only work on the
resources in the actual mbed Cloud Edge itself. Will be fixed soonest.

• From mbed Cloud REST API it must be possible to PUT/POST/DELETE values to endpoint devices.

– PUT has been implemented. More complicated than GET, as there are asynchronicity issues with sleepy
end-points. Details later on in flow charts.

– POST/DELETE still under work, but will follow the same schema as PUT.

– Some cases may be just pass through, e.g. Object delete.

Confidential © Arm 2017 Limited

mbed Cloud Client –
Edge version

Confidential © Arm 2017 Limited 19

mbed Cloud Client - Edge version 1/2

Mbed Cloud Edge is written in C and there is a client wrapper to bridge the C++ code to C.

Also there are number of changes to mbed Cloud Client to have the needed functionality
for mbed Cloud Edge:

• Re-registration support, to have the translated devices registered to mbed Cloud the full registration message
must be sent. Registration update support is on the roadmap.

• Link format changes in the registration message to explicitly identify mbed Cloud Edge resources as endpoint
devices in mbed Cloud.

• Resource removal support implemented to mbed Cloud Client, mbed-client does have it but the mbed Cloud
Client wrapper did not yet have it.

Mbed Cloud Edge Core implementation has mbed Cloud Client running and the
mbed Cloud Edge device itself is also as a normal LWM2M device.

Confidential © Arm 2017 Limited 20

mbed Cloud Client – Edge version 2/2

Connected device is presented as an object in mbed Cloud Edge devices resource
structure.

The link format change and mbed Cloud changes were implemented to represent these
resources as individual endpoint devices in the mbed Cloud.

Mbed Cloud Edge
(device)

OBJECT
connected Device X

Device X

OBJECT 3300

Instance 0

Resource 7600

OBJECT 3300

Instance 0

Resource 7600

Confidential © Arm 2017 Limited

Protocol Translator
Use-case-flows

Confidential © Arm 2017 Limited 22

We supply one example – pt-example
That show cases the available functionality

Please look up the file pt-example/client_example.c.

It contains a good starting point for any protocol translator.

It has comments ”customer code” – these are the hook points.

It’s main() has this:

pt_client_start(port, (char*)pt_name,

connection_ready_handler, received_write_handler);

This is where the PT things start.

1) connection_ready_handler will register the PT.

After that – everything is event based.

Confidential © Arm 2017 Limited 23

Register PT

Our pt-example has this code.

void connection_ready_handler()

{

/* Initiate protocol translator registration */

pt_register_protocol_translator(

protocol_translator_registration_success,

protocol_translator_registration_failure,

NULL);

}

Confidential © Arm 2017 Limited 24

Add end-points
The beginning part:
– how to find the devices
– potentially pair/authenticate them
PT needs to handle all that.

End-point structure describes the objects,
object instances & resources the device has.

Call-backs are used to handle failure and
success.

Consider the callbacks interrupt context!
• If your actions take a long time,

kick the job to a worker thread.

Confidential © Arm 2017 Limited 25

Code from pt-example:
1st, create device PT structure

/**
* \brief Creates a pt_device structure.
*
* @device_is The unique ID of the device.
* @lifetime The device lifetime in seconds.
* @queuemode The queue mode.
*
*/

struct pt_device* pt_create_device(char* device_id, uint32_t lifetime, char* queuemode)
{

struct pt_device *device = (struct pt_device *)malloc(sizeof(struct pt_device));
device->device_id = device_id;
device->lifetime = lifetime;
device->queuemode = queuemode;
device->objects = pt_object_list_create();

return device;
}

NOTE! Device ID must be:
- Unique (to all of your devices) AND
- Persistent (must remain the same, always)

Lifetime and queue mode are currently not supported.

Confidential © Arm 2017 Limited 26

Code from pt-example:
2ndly, we create the objects/object instance/resources.

/**
* \brief Creates objects representing example M2M LWM object structure.
* \param temperature is value for creating example resource that is stored as opaque value at
* path `/<example-device-id>/5432/0`
* The opaque value will become e.g. "100 F" when given 100 as input temperature.
*/

pt_object_list_t *create_device_objects(int temperature) {
const char *opaque_data_string ="Temp ";

/* IDs */
uint16_t object_id = 5432;
uint16_t opaque_id = 0;
uint16_t object_instance_id = 0;

pt_object_list_t *objects = NULL;
pt_object_t *object = NULL;
pt_object_instance_t *instance = NULL;
pt_resource_opaque_t *resource = NULL;
char *data = alloc_string_from(opaque_data_string);
sprintf(data + 5, "%d F", temperature);
unsigned int operations = 0;
operations |= (OPERATION_READ | OPERATION_WRITE | OPERATION_EXECUTE | OPERATION_DELETE);

object = pt_object_create(object_id);
objects = pt_object_list_create();
instance = pt_object_instance_create(object_instance_id);
pt_object_list_add_object(objects, object);
pt_object_add_instance(object, instance);

resource = pt_resource_create_opaque(opaque_id, operations, data, strlen(data) + 1);
pt_object_instance_add_resource(instance, (pt_resource_t *)resource);
return objects;

}

Allowed operations for the object.
Could be a subset, for example READ

only.

5432/0/0 will be created.

Confidential © Arm 2017 Limited 27

Code from pt-example:
3rd, we register the device – using the device PT info and object list as input.

/**
* \brief Register the device to Mbed Cloud Edge.
*
* The callbacks are run on the same thread as the event loop of the protocol translator client.
* If the related functionality of the callback does some long processing the processing
* must be moved to worker thread. If the processing is run directly in the callback it
* will block the event loop and therefore it will block the whole protocol translator.
*
* \param device_id_string The unique identification of the device.
* \param success_handler The function to be called when the device registration succeeds
* \param failure_handler The function to be called when the device registration fails
* \param handler_param The parameter that is passed to the success or failure handler.
* \param temperature The initial temperature of the device
*/
static void register_device(

const char *device_id_string,
pt_response_handler success_handler,
pt_response_handler failure_handler,
void *handler_param,
int temperature)

{
struct pt_device *device = create_device(device_id_string);
pt_object_list_t *objects = create_device_objects(temperature);
pt_device_add_object_list(device, objects);
pt_register_device(device, success_handler, failure_handler, handler_param);
pt_object_list_destroy(objects);
pt_device_free(device);

}

Once the objects are sent, they are not
needed anymore (by default) – if it

succeeds, they will be the mbed Cloud
Client object list.

Create device, it’s objects, add them to
the list and ask to register (with

callbacks).

Confidential © Arm 2017 Limited 28

GET – write to Cloud
Flow chart

It fully depends on the connected device if you
either
a) Get some interrupt or similar to inform of a

new resource value OR
b) You have to poll the devices periodically.

Nevertheless, once you have the value in the PT to
write, call pt_write_value().
• There can be failures (connection broken, ...).
• Callbacks are used again.

• Again, interrupt context!
• Don’t take too long OR use worker thread.

Confidential © Arm 2017 Limited 29

GET – example code
Pre-emptively writing the data to the mbed Clout

/**
* \brief Writes a value to device with given device id.
*
* The callbacks are run on the same thread as the event loop of the protocol translator client.
* If the related functionality of the callback does some long processing the processing
* must be moved to worker thread. If the processing is run directly in the callback it
* will block the event loop and therefore it will block the whole protocol translator.
*
* \param device_id_string The unique identification of the device.
* \param temperature The temperature of the device.
*/

void write_value(const char *device_id_string, int temperature)
{

struct pt_device *device = create_device(device_id_string);
pt_object_list_t *objects = create_device_objects(temperature);
tr_info("write_value temperature=%d", temperature);
pt_device_add_object_list(device, objects);
pt_write_value(device, device->objects, write_value_success, write_value_failure, NULL);
pt_object_list_destroy(objects);
pt_device_free(device);

}

Create target device, objects, object
info, resource we want to update.

Call pt_write with the device, device
object and the callbacks for success and

failure.
You can also give some callback

parameter, if need be.

Free up the device, object etc. after
doing the write.

Confidential © Arm 2017 Limited 30

PUT
Cloud writes to device
PUT is more trickier if you do not have
constant connection to the device.
Cloud will wait maximum 2 minutes for the
ACK for delayed response.

A PUT will trigger write callback in the PT.
The value in the MCE Core WILL NOT CHANGE.

If the end point is not reachable, you must
queue the request to the PT. PT needs to do
the write once it has connection to the device
again.

You must do a pt_write_value (i.e. PUT)
to the device in order to change that value in
the MCE and reflect it back as a confirmation
to the mbed Cloud.

Confidential © Arm 2017 Limited 31

PUT – write data to device – example code
Remember the main() function?

pt_client_start(port, (char*)pt_name, connection_ready_handler,
received_write_handler);

/**
* \brief Implementation of handler for write messages received from mbed Cloud Edge Core.
*
* \param device* Received data from write message. The ownership of the data structure is passed
* to this callback.
*/

void received_write_handler(struct pt_device *device)
{

tr_info("mbed Cloud Edge write to protocol translator.");
tr_info("Write back to mbed Cloud Edge the incoming data.");
pt_write_value(device, device->objects, write_value_success, write_value_failure, NULL);
/*
* Free the structures, the ownership is transferred to this callback.
*/

pt_object_list_destroy(device->objects);
free(device->device_id);
pt_device_free(device);

}

This callback gets activated.

The device information has links to the object , object
instance, resource & value.

PT needs to map those to the real device resources and do
the writing there.

If immediate write is not possible – quite a lot of logic
needs to be implemented for the queueing.

Confidential © Arm 2017 Limited 32

Remove (un-register) end-point

Logic to spot the device needs removal is
application/protocol specific.

Initiative to unregister has to come somehow to the PT,
which then initiates the unregister procedure.

Confidential © Arm 2017 Limited 33

Unregister device – code sample

/**
* \brief Unregisters the test device
*/

void unregister_test_device()
{

struct pt_device *device = create_device(client_config_get_example_device_name());
pt_unregister_device(device, device_unregistration_success, device_unregistration_failure, /* userdata */ NULL);
pt_device_free(device);

}
Fairly straight-forward – create device
structure for PT and ask for unregister.

Confidential © Arm 2017 Limited 34

POST, DELETE
Not supported yet.

POST and DELETE have not been implemented yet.

They will come in upcoming releases.

However, the logic with these will be very much similar to what the PUT operation is
having.

- Callback to be registred for the operation.

- Callback gets the device pointer.

Confidential © Arm 2017 Limited 35

Special considerations
Sleepy or moving things are not that easy

If you have to queue PUTs, POSTs etc. to non-connected/sleepy devices, you must ensure
you will not run out of memory with the queue.

• Once devices move or run out of battery – those events need to be flushed out from
the queue.

• Device lifetime (re-registration period) and a timestamp for events,

• Periodic cleanup if (timestamp+lifetime) > time now.

If device moves from one mbed Cloud Edge to another – what do you do with the event
queue?

Confidential © Arm 2017 Limited

Demo – WISE 3610 with
WISE 1510 LoRa end-
point

Confidential © Arm 2017 Limited 37

Demo: WISE 3610 & WISE 1510
Jaakko Kukkohovi made an trial Protocol Translator for connecting the WISE 1510 to WISE
3610.

- This allows the WISE-1510 to present it’s sensor data (temperature, humidity) in the
mbed Cloud as LWM2M resources.

- In essence it’s not a LoRa protocol translator but an MQTT to LWM2M protocol
translator, because the WISE-1510s are visible in the Mosquitto service.

WISE-1510

WISE-3610

LoRa

PT

Mbed Cloud Edge

Mbed Coud Client

Mbed Cloud
/dev/3303/0/5700 (temp)

/dev/3304/0/5700
(humidity)

LoRa GW

MQTT client

MQTT broker

Confidential © Arm 2017 Limited

Visibility in the mbed Cloud
REST API

Confidential © Arm 2017 Limited 39

Looking up the the mbed Cloud Edge & it’s devices
Via Postman or some other REST API Tool

Looking up the mbed Cloud Edge

You can look up the devices using the REST API call

https://api.us-east-1.mbedcloud.com/v3/devices/

You can then add a filter to it, which filters by the
your device class for example

https://api.us-east-
1.mbedcloud.com/v3/devices?filter=device_class%
3DAdvantech_MBED_GW

Looking up the mbed Cloud Edge hosted
devices

Edge hosted devices have a value in the field ”
"host_gateway”.

You can find all Edge connected devices with:

https://api.us-east-
1.mbedcloud.com/v3/devices/?filter=host_gatewa
y__neq%3D%26%26 (i.e. host_gateway<>””)

You can find all specific Edge connected devices by
matching the host_gateway to the Edge device ID.

https://api.us-east-
1.mbedcloud.com/v3/devices/?filter=host_gateway%3D
<edge_device_id>

https://api.us-east-1.mbedcloud.com/v3/devices/
https://api.us-east-1.mbedcloud.com/v3/devices?filter=vendor_id=Advantech_MBED_GW
https://api.us-east-1.mbedcloud.com/v3/devices/?filter=host_gateway__neq=&&
https://api.us-east-1.mbedcloud.com/v3/devices/?filter=host_gateway=<edge_device_id

Confidential © Arm 2017 Limited

Error scenarios, debugging

Confidential © Arm 2017 Limited 41

Development tips

This is in essence typical Linux SW development – all the typical Linux development tools
can be utilized.

- valgrind for memory leaks

- gdb for debugging (or any other tool you prefer that works with the toolchain).

- strace for system calls.

Enable the traces – current default trace levels is INFO, but you might want to have
DEBUG.

mbed_cloud_edge_config.h:#define MBED_TRACE_MAX_LEVEL TRACE_LEVEL_INFO to
mbed_cloud_edge_config.h:#define MBED_TRACE_MAX_LEVEL TRACE_LEVEL_DEBUG

Confidential © Arm 2017 Limited 42

It does not compile – toolchain.cmake

The default toolchain.cmakewe supply is generic - for running directly on a Linux
machine that you are using.

For WISE-3610 (or any other SDK) – you must change the toolchain.

We have supplied another toolchain.cmake for the WISE-3610 via email – please
copy that into folder /build/mcc-linux-x86/ as toolchain.cmake.

More logs!
Enable the traces – current default trace levels is INFO, but you might want to have
DEBUG.

mbed_cloud_edge_config.h:#define MBED_TRACE_MAX_LEVEL TRACE_LEVEL_INFO to
mbed_cloud_edge_config.h:#define MBED_TRACE_MAX_LEVEL TRACE_LEVEL_DEBUG

Confidential © Arm 2017 Limited 43

Did I get a connection?

Look in the serial logs of the mbed-core.

[INFO][edgecc]: on_registered_callback, registered 0 objects

[INFO][edgecc]: on_registered_callback, unregistered objects

count 0

On the callback invocation of the registered you know the mbed Cloud Client got it’s
connection to the mbed Cloud.

If that does not show up, there is some problem.

Confidential © Arm 2017 Limited 44

Typical issues

Linux – can’t connect.

• [DBG][PAL]: Network failed reading interface info

• Can be related to the IPv6 network i/f chosen, but IPv6 networking not working end-2-
end.

• You can force IPv4 network by overriding the PAL_NET_DNS_IP_SUPPORT to 2 in
the file build/mcc-linux-x86/mbed_cloud_edge_config.h.

• I.e. add #define PAL_NET_DNS_IP_SUPPORT 2 to that file.

Confidential © Arm 2017 Limited 45

Typical issues

- Developer certificate allows only 100 devices – you can easily run out of those.

- You get error code quota exceeded if you have DEBUG level traces on.

- Check the device directory for the amount of devices.

- Delete the ones you don’t need anymore (via the portal).

Linux – lots of ”failed to create folder” errors in start.

- [DBG][PAL]: Failed to create folder, was the storage properly initialized?

- Create the PAL folder for the KCM data. (mkdir –p pal).

- If you use BYOC, you must have this folder in the device prior – so typically this only happens with developer mode.

- This will be improved as well.

Confidential © Arm 2017 Limited 46

Typical issues

Linux – can’t connect

• [ERR][regc]: ConnectorClient::create_register_object - Failed to read credentials

• Either:

1. Developer certificate is not found correctly. (Place the developer cert under /client-wrapper –folder).

2. If you chose BYOC mode, ensure the Factory Client injected the certificates to the same place where the Mbed

Cloud Edge (or mbed Cloud Client for that matter) is trying to use it from.

– By default the mbed Cloud Edge uses the palfolder in the smae folder as where the binary is.

– Update example uses /mnt/kcm.

4747

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!

Confidential © Arm 2017 Limited

4848

The Arm trademarks featured in this presentation are
registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All
rights reserved. All other marks featured may be
trademarks of their respective owners.

www.arm.com/company/policies/trademarks

Confidential © Arm 2017 Limited

