

Developer’s Guide

WISE-PaaS/RMM 3.1

Wireless IoT Sensing Embedded Agent
WISE-Agent Modbus Handler
Developer’s Guide

2

Change Log:

Date Version Description / Major change

2015/11/30 V0.1 Zach Chih, create draft document

2015/12/15 V1.0 Zach Chih, first formal release version

2016/2/17 V1.1 Zach Chih, add function description

2016/3/7 V1.2 Zach Chih, modify AI addresses matching modbus spec

3

Table of Content

1 INTRODUCTION ... 4

1.1 FRAMEWORK ARCHITECTURE .. 4

1.1.1 Provisioning & Communication .. 5

1.1.2 Core Management ... 5

2 MODBUS HANDLER .. 7

2.1 WORKING FLOW ... 7

2.2 FUNCTIONS AND FORMAT .. 7

2.2.1 Send Capability .. 8

2.2.2 Report Data ... 11

2.2.3 Upload Data ... 13

2.2.4 Get Data ... 15

2.2.5 Set Data ... 17

3 CONFIGURATION .. 17

4 APPENDIX .. 20

4.1 APPENDIX A ... 20

4.1.1 Modbus TCP/IP .. 20

4.1.2 Frame Format .. 20

4.1.3 Entities ... 22

4.1.4 Function Calls .. 23

4.1.4.1 Function code 1 (read coils) and function code 2 (read discrete inputs)............................... 25

4.1.4.2 Function code 5 (force/write single coil) .. 25

4.1.4.3 Function code 15 (force/write multiple coils) ... 25

4.1.4.4 Function code 4 (read input registers) and function code 3 (read holding registers) 26

4.1.4.5 Function code 6 (preset/write single holding register) ... 26

4.1.4.6 Function code 16 (preset/write multiple holding registers) .. 26

4.1.5 Exception responses .. 26

4.2 APPENDIX B ... 27

4.3 APPENDIX C ... 29

5 REFERENCE .. 30

4

1 Introduction

WISE Agent – a software development framework to communicate between device and RMM Server

Advantech provides a software development framework to communicate and exchange information between

a device and RMM Server called Wireless IoT Solutions Embedded Agent (WISE Agent).

WISE Agent framework provides a rich set of user-friendly, intelligent and integrated interfaces, which speeds

development, enhances security and makes agent application easier and simpler to communicate with RMM

Server.

Modbus handler is one of the handlers in the WISE Agent used to handle the communication between based

on Modbus TCP protocol.

1.1 Framework Architecture

The architecture of a WISE Agent framework with Modbus handler is described as follows. The agent includes

three different layers: Provisioning & Communication, Core Management and Handlers. The Modbus handler

is in the Handlers layer and is loaded by Handler Loader.

5

1.1.1 Provisioning & Communication

The Provisioning & Communication layer is the most important layer in this framework. The

Provisioning & Communication layer include one library to connect to RMM Server and two

structures defined the device information and server configuration.

Agent Client Library:

The library, named ‘SAClient’, is the main library user need to integrate into application, and

it provides several simple API to communicate and exchange data with RMM Server.

Platform Profiler:

The Structure defined the Agent Profile include Agent, Platform and Custom Information.

Agent Information carried the basic information about device ID, MAC Address, serial number, etc.

Platform Information carried the OS version, BIOS Version, CPU name, etc. Custom Information

carried the product name, manufacturer name and device type.

Configuration:

The Structure defined the Agent and Server Configuration. Agent Configuration configured

the agent executing mode. Server Configuration configured the server IP, listen port, login ID and

password.

1.1.2 Core Management

The Core Management layer in charge of load and manage the Handlers, bridge between

SAClient and Handlers, handle the commands of agent control.

Core Manager:

The core module, dynamic loaded by SAClient, takes charge of functional modules

(Handler Loader, General Command and Keep Alive) integration and interact with SAClient to

communicate with RMM Server.

Handler Loader:

This module will read an XML file (module_config.xml) to get the information of handlers,

including the name and path of handlers and how many handlers to load. This module also manage

those loaded handlers.

General Command:

6

This module handles all the commands to control the Agent, such as agent update, rename

host name. This module also handles the commands that need to delivered to all handlers, such as

“GetCapability” to collect the capability of each handler, “AtuoReportStart” and “AutoReportStop” to

control the sensor data report for every handler.

Keep Alive:

This module is the software watchdog to keep the threads of Handlers alive by calling

Handler_Get_Status.

7

2 Modbus Handler

Modbus handler is one of handlers in WISE Agent framework and is used to collect devices’ data based on

Modbus TCP protocol. The library used in Modbus handler is libmodbus [2], which is a 3
rd

 party free library to

send/receive data according to the Modbus protocol. This library is written in C and supports RTU (serial) and

TCP (Ethernet) communication. The license of libmodbus is LGPL v2.1v.

2.1 Working Flow

The flow of WISE Agent communicating with a device based on Modbus TCP by Modbus handler is described

as follows. The WISE Agent uses the Modbus handler as the interface to handle all the communication with

the device based on Modbus TCP protocol.

Steps of Modbus TCP protocol:

Step1 Modbus handler reads in Modbus.ini file and is ready to set up connection with device according to the

configuration in the INI file.

Step2 Modbus handler establishes a Modbus connection

Step3 WISE Agent communicates with the device.

Step4 If you no more need the communication, WISE Agent can disconnect with the device.

2.2 Functions and Format

Modbus handler has two major functions: Send Capability and Report Data. The Advantech sensor data

format refers to IPSO Alliance Guide [3] and uses Sensor Markup Language (SENML) [4] to define media

types for representing sensor measurements and device parameters in the SenML. Representations are

WISE Agent Device

M
o

d
b

u
s H

an
d

ler

Modbus TCP

Step2. Connect

Step4. Disconnect

Step3. Communication

Step1. Read INI

Modbus.ini

8

defined in JavaScript Object Notation (JSON) [5].

2.2.1 Send Capability

Modbus handler gets handler Capability and sends it to server according to an INI file configuration.

The following example showing format of reporting data is based on conditions below.

1) Device: WISE-4012E

2) IP: 192.168.1.1

3) Port: 502

4) Connection: true

5) Item List:

1> Plaform:

 1-Name

 2-SlaveIP

 3-SlavePort

 4-Connection

2> Four inputs:

 1- Digital Inputs: Two switches

 2- Analog Inputs: Two voltage inputs

3> Two outputs:

 1- Digital Outputs: Two LEDs

{

 "Modbus_Handler": {

 "Platform": {

 "bn": "Platform",

 "e": [

 {

 "n": "Name",

 "sv": "WISE-4012E",

 "asm": "r"

 },

 {

 "n": "SlaveIP",

 "sv": "192.168.1.1",

9

 "asm": "r"

 },

 {

 "n": "SlavePort",

 "sv": "502",

 "asm": "r"

 },

 {

 "n": "Connection",

 "bv": true,

 "asm": "r"

 }

]

 },

 "Digital Input": {

 "bn": "Digital Input",

 "e": [

 {

 "n": "Switch0",

 "bv": true,

 "asm": "r"

 },

 {

 "n": "Switch1",

 "bv": true,

 "asm": "r"

 }

]

 },

 "Digital Output": {

 "bn": "Digital Output",

 "e": [

 {

 "n": "LED0",

 "bv": true,

 "asm": "rw"

 },

 {

 "n": "LED1",

10

 "bv": true,

 "asm": "rw"

 }

]

 },

 "Analog Input": {

 "bn": "Analog Input",

 "e": [

 {

 "n": "Voltage0",

 "v": 4.645000,

 "max": 5,

 "min": 0,

 "asm": "r",

 "u": "V"

 },

 {

 "n": "Voltage1",

 "v": 4.659000,

 "max": 5,

 "min": 0,

 "asm": "r",

 "u": "V"

 }

]

 }

 }

}

The details of semantics in the JSON are described in Appendix B.

11

2.2.2 Report Data

Modbus handler gets devices’ information repeatedly and reports these data to server based on specific item

list or report setting. And the data are uploaded according to an INI file configuration.

The following example showing format of reporting data is based on conditions below.

1) Device: WISE-4012E

2) IP: 192.168.1.1

3) Port: 502

4) Connection: true

5) Item List:

1> Plaform:

 1-Name

 2-SlaveIP

 3-SlavePort

 4-Connection

2> Four inputs:

 1- Digital Inputs: Two switches

 2- Analog Inputs: Two voltage inputs

3> Two outputs:

 1- Digital Outputs: Two LEDs

{

 "Modbus_Handler": {

 "Platform": {

 "bn": "Platform",

 "e": [

 {

 "n": "Name",

 "sv": "WISE-4012E"

 },

 {

 "n": "SlaveIP",

 "sv": "192.168.1.1"

 },

 {

 "n": "SlavePort",

 "sv": "502"

 },

12

 {

 "n": "Connection",

 "bv": true

 }

]

 },

 "Digital Input": {

 "bn": "Digital Input",

 "e": [

 {

 "n": "Switch0",

 "bv": true

 },

 {

 "n": "Switch1",

 "bv": true

 }

]

 },

 "Digital Output": {

 "bn": "Digital Output",

 "e": [

 {

 "n": "LED0",

 "bv": true

 },

 {

 "n": "LED1",

 "bv": true

 }

]

 },

 "Analog Input": {

 "bn": "Analog Input",

 "e": [

 {

 "n": "Voltage0",

 "v": 4.634000

 },

13

 {

 "n": "Voltage1",

 "v": 4.669000

 }

]

 }

 }

}

The item list can be abbreviated as the item type or hander name, e.g., /Modbus_Handler/Digital Input/

means all Digital Inputs, /Modbus_Handler/ means all items. The details of semantics in the JSON are

described in Appendix B.

2.2.3 Upload Data

Modbus handler gets devices’ information repeatedly and reports these data to server based on specific item

list and two time parameters interval and timeout for upload setting. And the data are uploaded according to

an INI file configuration.

The following example showing format of uploading data is based on conditions below.

1) Device: WISE-4012E

2) IP: 192.168.1.1

3) Port: 502

4) Connection: true

5) Item List:

1> Plaform:

 1- Name

 2- SlaveIP

 3- SlavePort

 4- Connection

2> Four inputs:

 1- Digital Inputs: Two switches

 2- Analog Inputs: Two voltage inputs

3> Two outputs:

 1- Digital Outputs: Two LEDs

{

 "Modbus_Handler":{

 "Platform":{

 "bn":"Platform",

 "e":[

14

 {

 "n":"Name",

 "sv":"WISE-4012E"

 },

 {

 "n":"SlaveIP",

 "sv":"192.168.1.1"

 },

 {

 "n":"SlavePort",

 "sv":"502"

 },

 {

 "n":"Connection",

 "bv":true

 }

]

 },

 "Digital Input":{

 "bn":"Digital Input",

 "e":[

 {

 "n":"Switch0",

 "bv":true

 },

 {

 "n":"Switch1",

 "bv":false

 }

]

 },

 "Digital Output":{

 "bn":"Digital Output",

 "e":[

 {

 "n":"LED0",

 "bv":true

 },

 {

15

 "n":"LED1",

 "bv":true

 }

]

 },

 "Analog Input":{

 "bn":"Analog Input",

 "e":[

 {

 "n":"Voltage0",

 "v":4.664000

 },

 {

 "n":"Voltage1",

 "v":4.677000

 }

]

 }

 }

}

The item list can be abbreviated as the item type or hander name, e.g., /Modbus_Handler/Digital Input/

means all Digital Inputs, /Modbus_Handler/ means all items. The details of semantics in the JSON are

described in Appendix B.

2.2.4 Get Data

Modbus handler gets devices’ information and reports these data with status codes to server based on

specific sensor list. And the data are uploaded according to an INI file configuration.

The following example showing format of getting data is based on conditions below.

1) Device: WISE-4012E

2) IP: 192.168.1.1

3) Port: 502

4) Connection: true

5) Sensor List:

1> Four inputs:

 1- Digital Inputs: Two switches

 2- Analog Inputs: Two voltage inputs

{

16

 "sessionID":"3B579DA6D9E804D10316E5285586304F",

 "sensorInfoList":{

 "e":[

 {

 "n":"Modbus_Handler/Analog Input/Voltage1",

 "v":4.675000,

 "StatusCode":200

 },

 {

 "n":"Modbus_Handler/Analog Input/Voltage0",

 "v":4.653000,

 "StatusCode":200

 },

 {

 "n":"Modbus_Handler/Digital Input/Switch1",

 "bv":false,

 "StatusCode":200

 },

 {

 "n":"Modbus_Handler/Digital Input/Switch0",

 "bv":true,

 "StatusCode":200

 }

]

 }

}

The details of semantics in the JSON and StatusCode are described in Appendix B and Appendix C.

17

2.2.5 Set Data

Modbus handler sets a specific value to a sensor on the device and the status of setting is reported.

The following example showing format of setting data is based on conditions below.

1) Device: WISE-4012E

2) IP: 192.168.1.1

3) Port: 502

4) Connection: true

5) Sensor: Digital Output: LED0

{

 "sessionID":"3B579DA6D9E804D10316E5285586304F",

 "sensorInfoList":{

 "e":[

 {

 "n":"Modbus_Handler/Digital Output/LED0",

 "sv":"Success",

 "StatusCode":200

 }

]

 }

}

The details of semantics in the JSON and StatusCode are described in Appendix B and Appendix C.

3 Configuration

To set the configuration of which and where the values lie for reading, the Modbus takes an INI file named as

Modbus.ini as the input. The INI file format [6] is an informal standard for configuration files for some platforms

and is a text file with a basic structure composed of sections, properties and values.

The following shows an example configuration of WISE-4012E. WISE-4012 has two digital inputs for two

switches, two digital outputs for two LEDs and two analog inputs for two voltage adjusters. The addresses of

these values are given below.

18

WISE-4012E Wireless Modbus Mapping Table

19

INI File for WISE-4012E

The details of WISE-4012E in INI file:

First Section:

[Platform] describes a device name, IP and Port used by the device.

Second Section:

[Digital Input] describes the number of digital input and a offset address of a value which is as

“DI0=1”, meaning the DI0 value is at offset 1 then the name of the digital input follows.

Third Section:

[Digital Output] describes the number of digital output and a offset address of a value which is as

“DO0=16”, meaning the DO0 value is at offset 16 then the name of the digital output follows.

Forth Section:

 [Analog Input] describes the number of analog input and a offset address of a value which is as

“AI1=1”, meaning the AI1 value is at offset 1 then the name of the digital output follows. The range, precision

[Platform]

Name=WISE-4012E

SlaveIP=192.168.1.1

SlavePort=502

[Digital Input]

numberOfDI=2

DI0=0,Switch0

DI1=1,Switch1

[Digital Output]

numberOfDO=2

DO0=16,LED0

DO1=17,LED1

[Analog Input]

numberOfAI=2

AI0=0,Voltage0,0,5,0.001,V

AI1=1,Voltage1,0,5,0.001,V

20

and unit of the value are given too, as “0,5,0.001,V” means the minimum value is 0, the maximum value is 5,

the precision is 0.001 and the unit is voltage.

If the device has other attributes like Analog Output, you should add another section named as [Analog

Output]. And if the device has less attributes, you should remove the corresponding section too. To set an

appropriate configuration, please refer to the specification of the device.

4 Appendix

4.1 Appendix A

Modbus [1] is a serial communications protocol originally published by Modicon (now Schneider Electric) in

1979 for use with its programmable logic controllers (PLCs). Modbus is simple and robust to implement.

And it is now commonly available means of connecting industrial electronic devices.

The versions of Modbus protocol exist for serial port and for Ethernet and other protocol that support the

Internet protocol suite. And the Modbus Handler is based on one of these protocols, Modbus TCP/IP or

Modbus TCP, which is for Ethernet.

4.1.1 Modbus TCP/IP

Modbus TCP/IP is a Modbus variant used for communications over TCP/IP protocols, and the port used is

502. The Modbus TCP/IP does not have a checksum calculation as lower layers already provide checksum

protection.

4.1.2 Frame Format

A Modbus frame is composed of an Application Data Unit (ADU) which encloses a Protocol Data Unit (PDU.)

 ADU = Address + PDU + Error check

 PDU = Function code + Data

https://en.wikipedia.org/wiki/Programmable_logic_controller

21

However, the Modbus TCP/IP does not have the Error check part because it already has the checksum

protection mechanism.

22

Modbus TCP frame format

Name Length (bytes) Function

Transaction identifier 2 For synchronization between messages of server & client

Protocol identifier 2 Zero for Modbus/TCP

Length field 2 Number of remaining bytes in this frame

Unit identifier 1 Slave address (255 if not used)

Function code 1 Function codes as in other variants

Data bytes n Data as response or commands

Unit identifier is used with Modbus/TCP devices that are composites of several Modbus devices, e.g. on

Modbus/TCP to Modbus RTU gateways. In such case, the unit identifier tells the Slave Address of the device

behind the gateway. Natively Modbus/TCP-capable devices usually ignore the Unit Identifier.

4.1.3 Entities

Modbus has four entities for processing different kinds of input/output data. Each of entities has its own

address range and function as below.

(Entity address is a 16-bit value in the data part of the Modbus frame and its range goes from 0 to 65535.)

Entity Address Range Type Mode Function

Coils 00001~09999 Single bit Read/Write Read/Write discrete output or coils

Discrete Input 10001~19999 Single bit Read Read discrete inputs

Input

Registers
30001~39999

16-bit value Read Read 16-bit input registers such as

analog inputs

Holding

Registers
40001~49999

16-bit value Read/Write Read/Write 16-bit holding registers

such as I/O

23

4.1.4 Function Calls

The various reading, writing and other operations are categorized as follows. The most primitive reads and

writes are shown in bold. Requests and responses follow frame formats described in the following sections.

This Chapter gives details of data formats of most used function codes.

Modbus function codes

Function type Function name
Function

code

Data

Access

Bit access

Physical Discrete Inputs Read Discrete Inputs 2

Internal Bits or Physical Coils

Read Coils 1

Write Single Coil 5

Write Multiple Coils 15

16-bit

access

Physical Input Registers Read Input Registers 4

Internal Registers or Physical Output

Registers

Read Multiple Holding

Registers
3

Write Single Holding Register 6

Write Multiple Holding

Registers
16

Read/Write Multiple Registers 23

Mask Write Register 22

Read FIFO Queue 24

File Record Access

Read File Record 20

Write File Record 21

Diagnostics

Read Exception Status 7

Diagnostic 8

Get Com Event Counter 11

Get Com Event Log 12

Report Slave ID 17

Read Device Identification 43

Other
Encapsulated Interface

Transport
43

24



25

4.1.4.1 Function code 1 (read coils) and function code 2 (read

discrete inputs)

Request

Address of first coil/discrete input to read (16 bits)

Number of coils/discrete inputs to read (16 bits)

Normal response
Number of bytes of coil/discrete input values to follow (8-bit)

Coil/discrete input values (8 coils/discrete inputs per byte)

Value of each coil/discrete input is binary (0 for off, 1 for on.)

4.1.4.2 Function code 5 (force/write single coil)

Request

Address of coil (16-bit)

Value to force/write: 0 for off and 65,280 (FF00 in

hexadecimal) for on

Normal response

Address of coil (16-bit)

Value to force/write: 0 for off and 65,280 (FF00 in

hexadecimal) for on

4.1.4.3 Function code 15 (force/write multiple coils)

Request

Address of first coil to force/write (16-bit)

Number of coils to force/write (16-bit)

Number of bytes of coil values to follow (8-bit)

Coil values (8 coil values per byte)

Normal response
Address of first coil (16-bit)

number of coils (16-bit)

Value of each coil is binary (0 for off, 1 for on).

26

4.1.4.4 Function code 4 (read input registers) and function code 3

(read holding registers)

Request
Address of first register to read (16-bit)

Number of registers to read (16-bit)

Normal response
Number of bytes of register values to follow (8-bit)

Register values (16 bits per register)

4.1.4.5 Function code 6 (preset/write single holding register)

Request
Address of holding register to preset/write (16-bit)

New value of the holding register (16-bit)

Normal response
Address of holding register to preset/write (16-bit)

New value of the holding register (16-bit)

4.1.4.6 Function code 16 (preset/write multiple holding registers)

Request

Address of first holding register to preset/write (16-bit)

Number of holding registers to preset/write (16-bit)

Number of bytes of register values to follow (8-bit)

New values of holding registers (16 bits per register)

Normal response
Address of first preset/written holding register (16-bit)

number of preset/written holding registers (16-bit)

4.1.5 Exception responses

For a normal response, slave repeats the function code. If a slave want to report an error, it will reply with

the requested function code plus 128 (3 becomes 131), and will only include one byte of data, known as

the exception code.

27

Main Modbus exception codes

4.2 Appendix B

Media Types for Sensor Markup Language (SENML)

Semantics

SenML JSON Type Description

Base Name bn String This is a string that is prepended to the names found in the

entries

Base Time bt Integer A base time that is added to the time found in an entry

Base Units bu String A base unit that is assumed for all entries, unless otherwise

indicated

Version ver Number Version number of media type format

Measurement or

Parameters

e Array Array of values for sensor measurements or other generic

parameters

Name n String Name of the sensor or parameter

Units u String Units for a measurement value

Value v Float Value of the entry

String Value sv String

Boolean Value bv Boolean

Value Sum s Float Integrated sum of the values over time

28

Time t Integer Time when value was recorded

Update Time ut Integer Update time. A time in seconds that represents the

maximum time before this sensor will provide an updated

reading for a measurement.

29

The Data Type of Sensor Data Type

Data Type (type) SenML Field

b (boolean) bv

s (string) s

e (enum) e

i (integer) v

d (decimal) v

h(hexadecimal) s

o(octet-stream) s

Advantech Sensor Semantics

SenML JSON Type Description

Min Range Value min Float The minimum value that can be measured by the sensor

Max Range Value max Float The maximum value that can be measured by the sensor

Access Mode asm String The access mode of the resource. Ex: read (r), write (w),

read/write (rw)

Standard Format st String The sensor format is which standard format

Health Status Health Integer The health status of network or device. Range: -1 ~ 100

Good: > 80, Average: 60 ~ 80, Below Average: 40~60,

Bad:0~40, -1: Off line or Fault

4.3 Appendix C

The status code is used to describe the status of setting or getting data in a session.

Status Code

StatusCode Meaning

200 Success

404 Not Found

405 Read/Write Only

415 Format Error

416 Out Of Range

500 Fail

503 System Busy

30

5 Reference

[1] “Modbus,” [online]. Available: https://en.wikipedia.org/wiki/Modbus.

[2] “libmodbus,” [online]. Available: http://libmodbus.org/documentation/.

[3] “IPSO,” [online]. Available: http://www.ipso-alliance.org/.

[4] “SENML,” [online]. Available: https://datatracker.ietf.org/doc/draft-jennings-senml/.

[5] “JSON,” [online]. Available: http://json.org/.

[6] “INI File,” [online]. Available: https://en.wikipedia.org/wiki/INI_file.

