

Intel® Gateway Solutions for the
Internet of Things – Development
Kit – DK300 – Secure Boot

ODM and User’s Implementation Guide

July 2014

Document Number: 547808

About This Document

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in
personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION,
YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by
Intel that have not been made commercially available to the public, i.e., announced, launched or shipped. They are never to be
used as “commercial” names for products. Also, they are not intended to function as trademarks.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, Intel Atom, Intel Core, Intel® Hyper-Threading Technology, Intel® Trusted Execution Technology, Intel logo are trademarks
or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Wind River is a trademark of Wind River Systems, Inc.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
2 Document Number: 547808

http://www.intel.com/design/literature.htm

About This Document

Contents
1 About This Document ..6

1.1 Objective ..6
1.2 Target Audience ...6
1.3 Terminology ..6

2 Secure Boot Enablement ..7
2.1 High-Level Flow ...7
2.2 Detailed Secure Boot Flow ...8

3 Creating the Secure Boot Image and Flash Target Device 11
3.1 Splitting UEFI Stages, Producing Stage Hashes, Creating Data Region 11
3.2 Creating the Secure Boot Firmware Image and Flashing the Target Device 13

3.2.1 Creating the 5 MB BIOS with Secure Boot Manifest 14
3.2.2 Creating the SPI Flash Binary .. 16
3.2.3 Flashing the SPI Image on the Target Device Using UEFI shell 22
3.2.4 Flashing the SPI Image onto the Target Device Using Dediprog 25

4 Programming the Field Programmable Fuses (FPF) ... 27

5 Implementing UEFI Secure Boot (Stage 3) .. 29
5.1 Creating Owner Public and Private Keys ... 30
5.2 Creating Vendor Public and Private Keys .. 31
5.3 Signing Bootloader, Kernel, RootFS, RPM Packages 32

5.3.1 Signing the Bootloader ... 32
5.3.2 Signing the Kernel ... 33
5.3.3 Signing RootFS ... 34
5.3.4 Signing RPM Packages ... 35
5.3.5 Deploying RootFS Image .. 36

6 Configuring UEFI for Secure Boot .. 37
6.1 Change the BIOS Settings ... 37
6.2 Enable Secure Boot .. 38
6.3 Test Secure Boot .. 38

Figures

Figure 1. SPI Flash Region Definition ...8
Figure 2. Secure Boot Flow ..9

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 3

About This Document

Tables

Table 1. Terminology ..6
Table 2. High-Level Boot Flow ..7
Table 3. Configuration Order ..8
Table 4. Required Software .. 11
Table 5. Files to Provide to End-User ... 12
Table 6. Required Software Tools .. 13
Table 7. Required Files .. 14
Table 8. Intelligent Device Platform Runtime Image Files .. 29
Table 9. Software Tools Required for UEFI Secure Boot .. 29
Table 10. Intelligent Device Platform Runtime Image Files .. 30
Table 11. Vendor Key SST Commands ... 31
Table 12. Bootloader Signing SST Commands ... 32
Table 13. Kernel Signing SST Commands ... 33
Table 14. RootFS Signing SST Commands .. 34
Table 15. RPM Signing SST Commands .. 35

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
4 Document Number: 547808

About This Document

Revision History

Date Revision Description

July 2014 1.0 First release

§

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 5

About This Document

1 About This Document

1.1 Objective
This document provides instructions to implement Secure Boot for the Intel® Gateway
Solutions for the Internet of Things – Development Kit – DK300 platform.

1.2 Target Audience
This publication is targeted to ODMs and end users for the Intel® Gateway Solutions
for the Internet of Things – Development Kit – DK300.

1.3 Terminology
In this publication:

• “Target Device” refers to the Intel® Gateway Solutions for the Internet of Things –
Development Kit – DK300

• “Host System” refers to computer that is used to contact and work with the Target
Device.

Table 1. Terminology

Term Description

IBB Initial Boot Block

ODM Original Design Manufacturer

OEM Original Equipment Manufacturer

Intel® TXE Intel® Trusted Execution Engine

UEFI Unified Extensible Firmware Interface

WiFi* Wireless-Fidelity

§

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
6 Document Number: 547808

Secure Boot Enablement

2 Secure Boot Enablement

2.1 High-Level Flow
The figure below shows the high level secure boot flow. After power on:

• The Intel® Trusted Execution Engine verifies the authenticity of the Secure Boot
Manifest.

• The Secure Boot Manifest verifies the authenticity of Stage 1.

• Stage 1 verifies the authenticity of Stage 2.

• During execution of Stage 2, the UEFI key database verifies the bootloader

• The bootloader verifies the authenticity of the kernel.

Table 2. High-Level Boot Flow

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 7

Secure Boot Enablement

Table 3. Configuration Order

Order of Configuration Stage Name Configured by

First Stage 2 Verification ODM or end user

Second Stage 1 Verification ODM or end user

Third Stage 3 Verification End user

2.2 Detailed Secure Boot Flow
To understand the secure boot flow, it is important to understand the SPI flash layout.
As shown in the figure below, the BIOS binary in SPI flash contains the following
components:

• BIOS Stage 1 (Initial Boot Block)

• BIOS Stage 2

• Secure Boot Manifest

• Intel® Trusted Execution Engine (Intel® TXE) firmware

Figure 1. SPI Flash Region Definition

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
8 Document Number: 547808

Secure Boot Enablement

Figure 2. Secure Boot Flow

Using the figures above as a reference, the secure boot flow is as follows:
1. When the Intel® Atom™ processor-based gateway is powered-on, the CPU is held

in reset and does not execute code. The Intel® Trusted Execution Engine ROM
code verifies the authenticity of Intel® Trusted Execution Engine firmware. The
Trusted Execution Engine in the Intel® Atom™ processor fetches and executes the
Intel® Trusted Execution Engine firmware resident on the SPI flash.

2. The Intel® Trusted Execution Engine firmware reads the internal Intel® Atom™
processor fuses. This is the SHA-256 hash of the RSA public key stored in the
unsigned region of the secure boot manifest. The Intel® Trusted Execution Engine
firmware performs a SHA-256 hash of the RSA public key stored in the unsigned
region of the secure boot manifest. The Intel® Trusted Execution Engine firmware
compares the calculated hash value against the value stored in the processor
fuses. If no match is found, execution is halted.

3. The signature of the signed part of the secure boot manifest is stored in the
Manifest’s Unsigned Part. See Figure 1. This signature is decrypted with the RSA
public key that was verified in Step 2. The decryption result is the SHA-256 hash
of the Manifest’s Signed Part.

4. The Intel® Trusted Execution Engine firmware calculates the SHA-256 hash of the
Manifest’s Signed Part and compares the result with the decrypted hash from Step
3. If no match, execution will halt. Since the IBB and UEFI Stage 2 hashes are
included in the Manifest’s Signed Part, successful verification of this step
guarantees the IBB and BIOS Stage 2 hashes are authentic and un-altered.

5. The Intel® Trusted Execution Engine firmware calculates the SHA-256 hash of the
Initial Boot Block. The calculated hash is compared to the authenticated IBB hash
in the Manifest. If the hashes are identical, then the IBB is authenticated and the
power management controller releases the CPU from reset. The CPU fetches and
executes the IBB, which performs basic initialization of the platform. This includes
memory initialization.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 9

Secure Boot Enablement

6. The IBB code calculates the SHA-256 hash of the UEFI Stage 2 and compares the
result against the UEFI Stage 2 hash that was authenticated in Step 4. If the
hashes are not identical, execution is halted.

7. The UEFI Stage 2 calculates the hash of grub.efi and compares it to the keys
that are enrolled in the UEFI key database. If the hashes are not identical,
execution is halted.

8. grub.efi decrypts the signature appended to the Linux kernel and verifies the
integrity. If verification passes, the system continues to load and execute the
kernel. Otherwise, execution is halted.

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
10 Document Number: 547808

Creating the Secure Boot Image and Flashing Target Device

3 Creating the Secure Boot
Image and Flashing Target
Device
The creation of the secure boot image is divided into two steps. The first must be
completed by an ODM. The second can be completed by either an ODM or an end
user:

• ODM only: Split UEFI stages, produce stage hashes, and create the data region.

• End user or ODM: Create the secure boot firmware image and flash it onto the
Target Device.
− ODM: If you generate the key pair and you are keeping the private key

secure, then you can optionally complete this step for your end user(s).
− End user: If you want to generate your own key pair, then your ODM will

complete the first step and provide you with the files you need to create the
secure boot firmware image.

3.1 Splitting UEFI Stages, Producing Stage Hashes,
Creating Data Region

Note: Only an ODM should complete the steps in this section.

The following software tools are required to complete these steps. These software
tools listed below are provided by AMI and use Microsoft* Windows 7 or 8. The files do
not need to be saved into any specific directory.

Table 4. Required Software

Software Tool Description

split.exe Splits binary files. Used to separate UEFI Stages

CryptoCon.exe Hashes UEFI Stages

insert.exe

ml.exe Microsoft* Linker

link.exe

GenFW.exe

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 11

Creating the Secure Boot Image and Flashing Target Device

1. The ORG.ROM file is provided by the BIOS vendor. It is 5 MB in size. Execute the
following commands to split it into IBB and UEFI Stage 2.

• split -f ORG.ROM -s 5115904 -o FD_NON_PRE_BB.fd -t FD_PRE_BB.fd

• split -f FD_PRE_BB.fd -s 1024 -o FD_PRE_BB_1K.fd -t
FD_PRE_BB_127K.fd

2. Use the following commands to generate the IBB and UEFI Stage 2 hashes:

• split -f ORG.ROM -s 331776 -o ORG.331776 -t ORG.4911104

• split -f ORG.4911104 -s 4251648 -o ORG.4251648

• split -f ORG.ROM -s 4190208 -o ORG.4190208 -t ORG.left

• split -f ORG.left -s 393216 -o FV_BB.Fv -t ORG.left2

• CryptoCon.exe -h2 -f ORG.4251648 -o HashSecondStageKey.bin

• CryptoCon.exe -h2 -f FV_BB.Fv -o HashFvBbKey.bin

3. Use the following commands to generate the OEM data region. See Figure 2:

• insert.exe CreateIncFromBin HashSecondStageKey.inc
HashSecondStageKey.bin

• insert.exe CreateIncFromBin HashFvBbKey.inc HashFvBbKey.bin

• ml /c /nologo /Fo GenBiosImageInfo.obj GenBiosImageInfo.asm

• link /NOENTRY /FIXED /DLL GenBiosImageInfo.obj
/OUT:GenBiosImageInfo.dll

• genfw --exe2bin GenBiosImageInfo.dll -o GenBiosImageInfo.bin

• split -f GenBiosImageInfo.bin -s 0x64 -o BiosImageInfo.bin

4. If your end user will be creating the secure boot firmware image, provide the

following files:

Table 5. Files to Provide to End-User

Filename Description

FD_PRE_BB_127K.fd IBB (127KB IBB)

FD_NON_PRE_BB.fd BIOS Stage 2

BiosImageInfo.bin OEM Data Region

ORG.ROM The 5 MB BIOS ROM from the BIOS vendor

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
12 Document Number: 547808

Creating the Secure Boot Image and Flashing Target Device

3.2 Creating the Secure Boot Firmware Image and
Flashing the Target Device
Either the end-user or the ODM can complete the steps in this section.

The steps below guide you through creating a secure boot firmware image with the
hardware root that will be flashed into the SPI flash device of the Intel® Gateway
Solutions for the Internet of Things – Development Kit – DK300.

Note: An Intel CNDA is required to access these tools. Contact your ODM for information.

Table 6. Required Software Tools

Software Tool Operating
System

Provided
by Description

FLAMInGo.exe Windows 7 or
higher Intel Hashing and secure boot manifest

creation

FusesConfiguration.bat Windows 7 or
higher Intel Sets up the manifest generation

tool environment

Simplesigner.exe Windows 7 or
higher Intel

Signs an input file with a private
key and provides an output
signature. An ODM will need to
develop their own tool.

OpenSSL Windows 7 or
higher, Linux

Open
source

Signs binaries, creates key pairs,
wraps private keys.

FITC.exe Windows 7 or
higher Intel

Combines descriptor, BIOS, PDR,
and Intel Intel® Trusted Execution
Engine FW binaries into one
image.

FPT/FPT64
Linux, EFI,
Windows 7 or
higher

Intel

Flash Programming Tool.
Programs the flash memory of
individual regions or the entire
flash device and one-time
programming Intel® Trusted
Execution Engine fuses of Intel®
Atom™ processor.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 13

Creating the Secure Boot Image and Flashing Target Device

In addition to the software tools, the following files are needed. The files do not need
to be saved into any specific directory.

Table 7. Required Files

Filename Description Provided
By

FD_PRE_BB_127K.fd IBB (127KB IBB) ODM

FD_NON_PRE_BB.fd UEFI Stage 2 ODM

BiosImageInfo.bin OEM Data Region ODM

ORG.ROM The 5 MB BIOS ROM that originates from the
BIOS vendor ODM

TXE_Region_3MB.7z The 3 MB Intel® Trusted Execution Engine
firmware Intel

oFpfMirrorNvarValues.txt Used to generate optional FPT mirror values Intel

3.2.1 Creating the 5 MB BIOS with Secure Boot Manifest

1. Generate a public and private key pair to sign and verify the Secure Boot Manifest.

You can modify the openssl parameters based on your security policy. Use the
command:

Note: Change the command to include the full path to the openssl.cnf file. For example,
-config “c:\OpenSSL-Win64\bin\openssl.cnf”

openssl req -batch -x509 -nodes -days 9000 -newkey rsa:2048 -keyout
“privatekey.pem” -out “publickey.pem” -config “openssl.cnf”

The output of this command is two files placed into your working directory:
privatekey.pem and publickey.pem.

2. Change the encoding of the private key to PKCS#8. Use the following commands:

openssl pkcs8 -topk8 -in privatekey.pem -out privatekey-pk8.pem -nocrypt

Rename privatekey-pk8.pem to privatekey.pem The output of this command is
privatekey.pem in PKCS#8 encoding.

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
14 Document Number: 547808

Creating the Secure Boot Image and Flashing Target Device

3. Hash the public key using the FLAMInGo tool from Intel. Use the following
command:

FLAMInGo.exe HashKey publickey.pem publickeyhash.txt

The output of this command is publickeyhash.txt placed into your working
directory

4. Create the Intel® Trusted Execution Engine fuse mirror values that will be

programmed into the Field Programmable Fuses of the Intel® Atom™ processor.
Use the following command and batch file:

FusesConfiguration.bat publickeyhash.txt oFpfMirrorNvarValues.txt
FpfMirrorNvarValues.txt

The output of this command is FpfMirrorNvarValues.txt placed into your
working directory

5. Create the Manifest structure and the hash of the Manifest Signed Part. Use the

following command:

FLAMInGo.exe SBManCreate FpfMirrorNvarValues.txt AmiManifest
FD_PRE_BB_127K.fd 2 publickey.pem -OEMDataFile BiosImageInfo.bin

The output of this command is two files placed into your working directory:
AmiManifest_SB_config.xml and AmiManifest_SB_hash.bin

6. Sign the Manifest’s hash with your private key. The following command is provided

as a sample. Signer of the manifest must use their own tool.

Simplesigner.exe privatekey.pem AmiManifest_SB_hash.bin
AmiManifest_SB_signature.bin

The output of this command is AmiManifest_SB_signature.bin placed into your
working directory.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 15

Creating the Secure Boot Image and Flashing Target Device

7. Create the Secure Boot Manifest. Inputs to this process are the fuse mirror values,
manifest xml structure and the manifest signature. Use the following command:

FLAMInGo.exe SBManComplete FpfMirrorNvarValues.txt AmiManifest
AmiManifest_SB_signature.bin

The output of this command is AmiManifest_SB_Manifest.bin placed into your
working directory

8. From the Windows CMD window merge the BIOS Stage 2 with the Manifest and

IBB. Use the following command:

copy /Y /B FD_NON_PRE_BB.fd+AmiManifest_SB_manifest.bin BIOS.ROM

The output of this command is BIOS.ROM placed into your working directory. The
file is 5 MB in size.

3.2.2 Creating the SPI Flash Binary

The following steps guide you through merging BIOS.ROM with the Intel® Trusted
Execution Engine firmware. This is the binary that will be programmed into the Target
Device’s SPI flash device.

1. Unzip Intel_Tools.zip
2. The BIOS.ROM file was generated in the previous set of steps. It is in your

working directory. Copy it to \Intel_Tools\Flash_Image_Tool
3. Unzip TXE_Region_3MB.7z into \Intel_Tools\Flash_Image_Tool
4. Copy FpfMirrorNvarValues.txt into \Intel_Tools\Flash_Image_Tool
5. Use the following command to run the Flash Image Tool:

\Intel_Tools\Flash_Image_Tool\fitc.exe

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
16 Document Number: 547808

Creating the Secure Boot Image and Flashing Target Device

6. When the Flash Image Tool opens, select Baytrail-IVI from the drop-down. See
the following figure:

7. Select BIOS Region from the left pane.
8. Select BIOS binary Input File from the right pane.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 17

Creating the Secure Boot Image and Flashing Target Device

9. Double click the Value column and browse to select BIOS.ROM to load the BIOS
region. See the following figure.

10. Select TXE Region from the left pane.
11. Select TXE Binary Input File from the right pane.

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
18 Document Number: 547808

Creating the Secure Boot Image and Flashing Target Device

12. Double click the Value column and browse to select TXE_Region_3MB.bin. The
Intel® Trusted Execution Engine region loads. See the following figure.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 19

Creating the Secure Boot Image and Flashing Target Device

13. Optional: The following steps load the FPF configuration file for FPF mirroring. Use
these steps only if FPF Mirroring will be used instead of HW FPF programming,
such as in a non-production environment. If you are not using FPF Mirroring, skip
to step 17.

Note: In a production environment the FPF Mirroring Configuration File should not be
included in the Stitching process.

Click the + next to TXE Region in the left pane and click the + next to
Configurations. See the following figure.

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
20 Document Number: 547808

Creating the Secure Boot Image and Flashing Target Device

14. Select TXE from the left pane.
15. Select FPF Mirroring File from the right pane.
16. Double click the Value column and browse to select FpfMirrorNvarValues.txt.

See the following figure.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 21

Creating the Secure Boot Image and Flashing Target Device

17. To complete the stitching process, build the binary image. Click Build -> Build
Image. See the following figure.

This produces the 8M SPI binary image (outimage.bin) to flash onto the Target
Device.

3.2.3 Flashing the SPI Image on the Target Device Using UEFI
shell

The UEFI shell can be programmed using the UEFI shell or dediprog. This section uses
the UEFI shell. This process requires a working BIOS on the Target Device. If the
Target Device does not have a working BIOS, see Section 3.2.4, Flashing the SPI
Image onto the Target Device using dediprog.

Note: Upon completing the following step, all contents of the USB flash drive will be deleted.
Back up any necessary content before proceeding.

1. Use the following command with a 1 GB or larger USB flash drive:

sudo mkdosfs -n ‘bios’ -I /dev/sd?

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
22 Document Number: 547808

Creating the Secure Boot Image and Flashing Target Device

2. Remove and reinsert the USB flash drive. It will mount automatically into
/media/bios. Use the following command to confirm the mount point:

mount

In the example shown below, /dev/sdc is mounted on /media/bios. See the text
circled in red.

3. Use the command below to copy the following files from the Host System to the

USB flash drive:

• fparts.txt

• fpt64.efi

• outimage.bin

cp fp* outimage.bin /media/bios

4. Unmount the USB flash drive.
5. Plug the USB flash drive into the Target Device.
6. Power on the Target Device and immediately press the DEL key to load the BIOS

Setup screen.
7. Under the Boot tab, select UEFI for Boot Option #1 as shown in the following

figure.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 23

Creating the Secure Boot Image and Flashing Target Device

8. Press the right arrow key to select Save and Exit. The Target Device will boot

into EFI.
9. At the EFI prompt, enter the fp0 partition on the USB flash drive and then confirm

the BIOS files are present (fparts.txt, fpt64.efi, outimage.bin). Use the
following commands:

fp0:

ls

Note: Do not continue before confirming you are in the location with the necessary files. If
necessary, change to the fp1 partition and look again for the files. To change to the
fp1 partition to look again, use the commands:

fp1:

ls

10. Complete the BIOS upgrade with the following command. Watch for errors.

fpt64.efi -F outimage.bin

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
24 Document Number: 547808

Creating the Secure Boot Image and Flashing Target Device

3.2.4 Flashing the SPI Image onto the Target Device Using
Dediprog

Note: If you successfully flashed the SPI Image onto the Target Device using the UEFI shell,
disregard this section.

The next steps guide you through flashing the SPI image using dediprog if your
original BIOS is not functioning and you cannot access the UEFI shell.

1. Connect the Dediprog SF100 programmer to the USB port of your Host System.
2. Connect the 8-pin header to the Target Device.
3. Execute DediProg Engineering software.
4. Click File and browse to select outimage.bin. See the following figure.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 25

Creating the Secure Boot Image and Flashing Target Device

5. Click Batch to begin programming to the SPI.
6. Once programming is done, click Verify to verify the checksum of the written

image in SPI and in the file buffer.
7. If checksum verification is ok then disconnect the Dediprog programmer header

from the Target Device.
8. Power up the Target Device.

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
26 Document Number: 547808

Programming the Field Programmable Fuses (FPF)

4 Programming the Field
Programmable Fuses (FPF)

Warning: The process in this section is irreversible and can be completed only one time. Errors
will render the Target Device permanently inoperable. Proceed with caution.

1. Boot the Target Device to the EFI shell.

Warning: Upon completing the following step, all contents of the USB flash drive will be deleted.
Back up any necessary content before proceeding.
2. Use FAT32 format to prepare a USB flash drive.
3. Copy \Intel_Tools\Flash_Programming_Tool to the USB flash drive.
4. Insert the USB flash drive into the Target Device.
5. Map the USB flash drive to the EFI Shell. Use the following command:

map -r

6. Change the path to the USB flash drive (for example: Shell>fs0:)
7. Change to the EFI directory. Use the following command:

Note: In the following command, replace EFI with EFI32 if this is a 32-bit shell.

cd \Intel_Tools\Flash_Programming_Tool\EFI

8. Read the default values in FPF. Use the following commands:

fpt64.efi -READFPF OEM_KEY_HASH_1

fpt64.efi -READFPF SECURE_BOOT_EN

fpt64.efi -READFPF Global_Valid

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 27

Programming the Field Programmable Fuses (FPF)

9. Program and Read back the OEM KEY HASH values. Use the following command.

Note: In the command below, replace <OEM hash value> with the actual hash value. For
example: fpt64.efi -WRITEFPF OEM_KEY_HASH_1 -v
0x2D8CE4A658C6A45D2B64C7FB3D73A31893EB58274BB383274BBAFDD355E55016

Warning: Do not use the sample value in the following programming command, You must use
your actual hash value.

fpt64.efi -WRITEFPF OEM_KEY_HASH_1 -v <OEM hash value>

fpt64.efi -READFPF OEM_KEY_HASH_1

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
28 Document Number: 547808

Implementing UEFI Secure Boot (Stage 3)

5 Implementing UEFI Secure
Boot (Stage 3)
UEFI Secure Boot is the technology name used by the UEFI Forum to describe UEFI
verification of UEFI applications. Any reference here to UEFI Secure Boot is referring
to the process of the UEFI Stage 2 verification of the grub.efi, a UEFI application. UEFI
Secure Boot is used to verify the authenticity of the grub.efi boot loader. Once grub.efi
has been authenticated, grub.efi verifies the authenticity of the kernel.

Note: This section assumes you have completed the build of your Wind River® Intelligent
Device Platform runtime image. The build process creates the files listed below. For
more information on the build process, see the Wind River Intelligent Device Platform
Programmer’s Guide XT 2.0.

Table 8. Intelligent Device Platform Runtime Image Files

Name Description Location

bzImage-intel-atom-
baytrail.bin

Kernel image file $Projdir/export/image/

bzImage-initramfs-intel-
atom-baytrail.bin

Kernel image file with
initramfs

$Projdir/export/image/

grub.efi Bootloader image file $Projdir/build/grub-efi-0.97-
r4/image/boot/grub/

grub.conf Bootloader configure file $Projdir/build/grub-efi-0.97-
r4/image/boot/grub/

wrlinux-image-glibc-idp-
intel-atom-baytrail.tar.bz2

IDP Root File System
tar ball

$Projdir/export/image/

wrlinux-image-glibc-idp-
intel-atom-baytrail-dist-
srm.tar.bz2

IDP Root File System
signed by SST tar ball

$Projdir/export/image/

wrlinux-image-glibc-idp-
intel-atom-baytrail.ext3

IDP Root File System
block file

$Projdir/export/image/

wrlinux-image-glibc-idp-
intel-atom-baytrail-
srm.ext3

IDP Root File System
signed by SST block file

$Projdir/export/image/

The tools listed below are required for the UEFI Secure Boot implementation process.

Table 9. Software Tools Required for UEFI Secure Boot

Tool Operation
System Provided by Description

SST Wind River
Linux Wind River IDP Signing tool for grub.efi, kernel,

RootFS and RPM.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 29

Implementing UEFI Secure Boot (Stage 3)

5.1 Creating Owner Public and Private Keys
This section guides you through creating the necessary chain of certificates and keys.
The root of this chain is an RSA pair called Owner-Cert and Owner-Private. The Owner
can bring a private key and use SST to generate a new public cert, based on the
existing private key.

The following table provides a description of the SST options.

Table 10. Intelligent Device Platform Runtime Image Files

Option Description Current Value Default Value

verbose Open or close the signing
trace. Value can be yes or no.

no no

name User defined name for the role. ownerE Name of the role

output-dir The output directory where
you can find your private key
and CA certificate

./outputE SST current
directory (“.”)

machine Target architecture. intel_atom_baytrail intel_atom

role Trust role in SRM. Can only be
vendor or owner.

owner N/A

1. The following example shows the generation of the Owner x509v3 certificate and

private key. Use the table above to modify and execute the following command:

./SST create-key --role=owner --machine=intel_atom_baytrail --name=ownerE \
--output-dir=./outputE

The following two files are placed in the directory ./outputE:

• ownerE-cert.pem

• ownerE-private.pem

2. If the Owner has a private key, then generate the Owner certificate with the

following command:

Note: In the following command owner-key.pem is the existing private key.

./SST create-key --role=owner --machine=intel_atom_baytrail --name=ownerE --
output-dir=./outputE --priv-key=owner-key.pem

The resulting Owner certificate is placed in the directory ./outputE directory as
ownerE-cert.pem

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
30 Document Number: 547808

Implementing UEFI Secure Boot (Stage 3)

5.2 Creating Vendor Public and Private Keys
The Vendor is an authorized entity by the Owner. This section guides you through the
required steps of creating a Vendor RSA key pair that is signed by the Owner’s private
key. The Vendor can provide a private key and use SST to generate a new public cert
based on the existing private key.

The following table provides a description of the SST options.

Table 11. Vendor Key SST Commands

Option Description Current Value Default Value

lverbose Open or close the signing
trace. Value can be yes or no

no no

name Vendor Name vendorE Name of the role

output-dir The output directory where
you can find your private key
and CA certificate

./outputE SST current
directory (“.”)

machine Target architecture. intel_atom_baytrail intel_atom

role Trust role in SRM. Can only be
vendor or owner.

vendor N/A

issuer The name of the issuer who
delegates to this vendor

ownerE owner

3. The following example shows the generation of the Vendor x509v3 certificate and

private key. Use the table above to modify and execute the following command:

./SST create-key --role=vendor --machine=intel_atom_baytrail \
--name=vendorE --output-dir=./outputE --issuer=ownerE

This command results in two files in the directory ./outputE: vendorE-cert.pem
and vendorE-private.pem

4. If the Vendor already has a private key, then generate the vendor certificate with
following command.

Note: In the following command, vendor-key.pem is the existing private key.

./SST create-key --role=vendor --machine=intel_atom_baytrail \
--name=vendorE --output-dir=./outputE --priv-key=vendor-key.pem

The resulting vendor certificate is placed in directory ./outputE as vendorE-
cert.pem

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 31

Implementing UEFI Secure Boot (Stage 3)

5.3 Signing Bootloader, Kernel, RootFS, RPM
Packages

5.3.1 Signing the Bootloader

The SST is used to sign and update the grub.efi bootloader with the appropriate
signatures and keys. The update process includes hashing grub.efi and encrypting
grub.efi with the Vendor private key. grub.efi is also updated to include the grub.efi
signature, Vendor certificate, and Owner certificate.

The following table provides a description of the commands used to sign the
bootloader.

Table 12. Bootloader Signing SST Commands

Option Description Current Value Default Value

verbose Open or close the signing
trace. Value can be yes or no.

no no

machine The target architecture intel_atom_baytrail intel_atom

owner-cert The root certificate of the trust
chain

ownerE-cert.pem The owner-
cert.pem file in the
SST current
directory

vendor-cert The device vendor certificate vendorE-cert.pem The vendor-
cert.pem file in the
SST current
directory

priv-key The device vendor private key vendorE-
private.pem

The vendor-
private.pem file in
the SST current
directory

The following example command shows signing the grub.efi bootloader. Use the
table above to modify and execute the following command:

./SST sign-bootloader --machine=intel_atom_baytrail --verbose=no \
--owner-cert=./ownerE-cert.pem --vendor-cert=./vendorE-cert.pem \
--priv-key=./vendorE-private.pem ./grub.efi

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
32 Document Number: 547808

Implementing UEFI Secure Boot (Stage 3)

5.3.2 Signing the Kernel

The SST is used to sign and update the kernel with the appropriate signatures and
keys. The update process includes hashing the kernel and encrypting the kernel with
the Vendor private key. The kernel also is updated to include the kernel signature and
Vendor certificate.

The following table provides a description of the commands used to sign the kernel.

Table 13. Kernel Signing SST Commands

Option Description Current Value Default Value

verbose Open or close the signing
trace. Value can be yes or no.

no no

machine The target architecture intel_atom_baytrail intel_atom

vendor-cert The device vendor certificate vendorE-cert.pem The vendor-
cert.pem file in the
SST current
directory

priv-key The device vendor private key vendorE-
private.pem

The vendor-
private.pem file in
the SST current
directory

The following example command shows signing the kernel. Use the table above to
modify and execute the following command:

./SST sign-kernel --machine=intel_atom_baytrail --verbose=no \
--vendor-cert=./vendorE-cert.pem --priv-key=./vendorE-private.pem \
./ bzImage-initramfs-intel-atom-baytrail.bin

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 33

Implementing UEFI Secure Boot (Stage 3)

5.3.3 Signing RootFS

A signature on RootFS ensures the binary and library in RootFS can be verified
successfully after the RootFS is deployed to the Target Device. The kernel and
bootloader image in RootFS can also be signed when using SST’s sign-all command to
sign RootFS.

The following table provides a description of the commands used to sign RootFS.

Table 14. RootFS Signing SST Commands

Option Description Current Value Default Value

verbose Open or close the signing
trace. Value can be yes or no.

no no

machine The target architecture intel_atom_baytrail intel_atom

vendor-cert The device vendor certificate vendorE-cert.pem The vendor-
cert.pem file in the
SST current
directory

priv-key The device vendor private key vendorE-
private.pem

The vendor-
private.pem file in
the SST current
directory

Owner-cert The root certificate of the trust
chain

ownerE-cert.pem The owner-
cert.pem file in the
SST current
directory

Output The signed RootFS output ./signed-
images.tar.bz2

The srm-enabled-
images.tar.bz2 file
in the current
directory

Mode RootFS type. Value can be
tarball or blockfile

tarball tarball

The following example command shows signing the RootFS tar ball (wrlinux-image-
glibc-idp-intel-atom-baytrail.tar.bz2). Use the table above to modify and execute the
following command:

./SST sign-all --mode=tarball --machine=intel_atom_baytrail --verbose=no \
--vendor-cert=./vendorE-cert.pem --priv-key=./vendorE-private.pem \
--owner-cert=./ownerE-cert.pem --output=./signed-images.tar.bz2 \
./ wrlinux-image-glibc-idp-intel-atom-baytrail.tar.bz2

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
34 Document Number: 547808

Implementing UEFI Secure Boot (Stage 3)

5.3.4 Signing RPM Packages

When the IDP SRM feature is enabled, an RPM package will not install on the Target
Device unless the RPM package was signed by the SST.

The following table provides a description of the commands used to sign RPM.

Table 15. RPM Signing SST Commands

Option Description Current Value Default Value

verbose Open or close the signing
trace. Value can be yes or no.

no no

priv-key The device vendor private key vendorE-
private.pem

The vendor-
private.pem file in
the SST current
directory

Mode Sign single RPM or multiple
RPM packages. Options are
rpm or dir.

rpm rpm

The following example command shows signing the RPM package
(example.atom.rpm). Use the table above to modify and execute the following
command:

./SST sign-rpm --mode=rpm --verbose=no --priv-key=./vendorE-private.pem \

./ example.atom.rpm

As an option, you can sign multiple RPM packages with following command:

./SST sign-rpm --mode=dir --verbose=no --priv-key=./vendorE-private.pem \

./ rpm-dir

The directory ./ rpm-dir contains RPM packages to sign. After the above command
completes, all RPM packages in rpm-dir will be signed.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 35

Implementing UEFI Secure Boot (Stage 3)

5.3.5 Deploying RootFS Image

Note: The following is a synopsis of the required steps. See the Wind River Intelligent Device
Platform Programmer’s Guide XT 2.0 for the complete process of deploying the RootFS
image.

1. Enter BIOS setup.
2. Disable secure boot.
3. Delete all secure boot variables.
4. Reboot the system into the USB flash drive.
5. After IDP loads, log in.
6. Transfer the USB flash drive Intelligent Device Platform image to the Target

Device HDD. Use the command:

tgt=/dev/sda /sbin/reset_media

7. Reboot the system.
8. Enter the EFI Shell.
9. Enter the HDD file system.
10. Execute the following command to :

• Enroll key and certificates into UEFI

• Lock the BIOS

• Create the KEK, db, and PK

/efi/boot/BOOTIA32.efi

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
36 Document Number: 547808

Configuring UEFI for Secure Boot

6 Configuring UEFI for Secure
Boot
This section provides instructions to enroll the grub.efi and kernel keys into the UEFI
secure key database to complete the Stage 3 secure boot setup.

6.1 Change the BIOS Settings
1. Insert the USB flash drive into a USB port on the Target Device.
2. Apply power, press the power button, and then immediately press the key

to enter the Boot Device Menu.
3. Select Enter Setup.
4. Navigate to Advanced > CSM Configuration > Video. Select UEFI only.
5. Press <F4>, and select Yes to save changes and reboot. Immediately press the

 key to enter the Boot Device Menu.
6. Select Enter Setup.
7. Navigate to the Advanced > CSM Configuration > CSM Support. Select

Disabled.
8. Press <F4> and select Yes to save changes and reboot. Immediately press the

 key to enter the Boot Device Menu.
9. Select Enter Setup.
10. Navigate to Security > Secure Boot Menu > Secure Boot. Select Disabled.
11. Navigate to Security > Secure Boot Menu > Secure Boot > Key

Management. Select Delete All Secure Boot Variable, and then select Yes.
12. Press <F4> and select Yes to save changes and reboot. Immediately press the

 key to enter the Boot Device Menu.
13. Select UEFI: Built-in EFI Shell.

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 37

Configuring UEFI for Secure Boot

6.2 Enable Secure Boot
1. At the Shell> prompt, type fs0: to enter VFAT partition on the USB flash drive.
2. At the fs0:\ prompt, type cd EFI\BOOT to change directories:
3. Use BOOTIA32.efi to enroll the keys/certificates into the UEFI and lock down the

BIOS. Success is indicated by the following message.

4. Press the key to enter the Boot Device Menu.
5. Select Enter Setup.
6. Navigate to Security > Secure Boot menu > Secure Boot. Select Enable.
7. Press the key.
8. Navigate to Boot Device Menu > UEFI: Built-in EFI Shell.
9. At the Shell> prompt, type fs0: to enter VFAT partition on the USB flash drive.
10. Type cd EFI\BOOT to change directories.
11. Run BOOTIA32.efi. Verify BOOTIA32.efi can boot the kernel successfully.

6.3 Test Secure Boot
Use the following steps to make sure that an unsigned grub.efi denies kernel boot.

1. Copy an unsigned grub.efi to /EFI/BOOT in the VFAT partition of your USB flash

drive. Name it UNSIGNED_BOOTIA32.efi
2. Plug the USB flash drive into the Target Device.
3. Press the key and select UEFI: Built-in EFI Shell option from the boot

device menu.
4. Run UNSIGNED_BOOTIA32.efi. You will receive a warning message similar to the

following and you will be denied access. This message indicates that the secure
boot policy being enforced:

Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
Implementation Guide July 2014
38 Document Number: 547808

Configuring UEFI for Secure Boot

5. Create an Intelligent Device Platform image with a signature that is different from
the signature in the UEFI database. Transfer the image to a USB flash drive.

6. From BIOS menu change the boot device priority to the USB flash drive.
7. Boot from the USB flash drive. You will see the following message:

§

 Intel® Gateway Solutions for the Internet of Things – Development Kit – DK300 – Secure Boot
July 2014 Implementation Guide
Document Number: 547808 39

	1 About This Document
	1.1 Objective
	1.2 Target Audience
	1.3 Terminology

	2 Secure Boot Enablement
	2.1 High-Level Flow
	2.2 Detailed Secure Boot Flow

	3 Creating the Secure Boot Image and Flashing Target Device
	3.1 Splitting UEFI Stages, Producing Stage Hashes, Creating Data Region
	3.2 Creating the Secure Boot Firmware Image and Flashing the Target Device
	3.2.1 Creating the 5 MB BIOS with Secure Boot Manifest
	3.2.2 Creating the SPI Flash Binary
	3.2.3 Flashing the SPI Image on the Target Device Using UEFI shell
	3.2.4 Flashing the SPI Image onto the Target Device Using Dediprog

	4 Programming the Field Programmable Fuses (FPF)
	5 Implementing UEFI Secure Boot (Stage 3)
	5.1 Creating Owner Public and Private Keys
	5.2 Creating Vendor Public and Private Keys
	5.3 Signing Bootloader, Kernel, RootFS, RPM Packages
	5.3.1 Signing the Bootloader
	5.3.2 Signing the Kernel
	5.3.3 Signing RootFS
	5.3.4 Signing RPM Packages
	5.3.5 Deploying RootFS Image

	6 Configuring UEFI for Secure Boot
	6.1 Change the BIOS Settings
	6.2 Enable Secure Boot
	6.3 Test Secure Boot

