Yocto Linux BSP Ver.9 User Guide for iMX6 series
Contents
- 1 Getting Started
- 2 Customization
- 3 System Recovery
- 4 Package List
Getting Started
Conventions
${PREBUILT_IMAGE} : compressed prebuilt image (*.img.gz)
${CONTAINER_NAME} : container name (e.g. imx6LBV8040)
${BSP_TARBALL} : BSP tarball (*.tgz)
${BSP_HOME} : home directory of the BSP
${BDIR} : build directory (e.g. build_x11)
${MX6PROC} : i.MX6 Processor
- mx6q for iMX6 Quad Core / Dual Core
- mx6dl for iMX6 Dual Lite / Solo
${IMX6PROC} : i.MX6 Processor
- imx6q / imx6dl
${BOARD} : available target boards list below
- rom5420/ / rom7421 / ubc220 / rom3420 / rom7420 / rsb4410 / rsb4411 / rsb6410 / ubcds31 / wise3310
${BOARD_REV} : board revision
- a1 / a2 / b1
${MC} : machine code combined with ${IMX6PROC}${BOARD}${BOARD_REV}
- for example,
- imx6dlrom5420b1 for ROM-5420 B1 Solo
- imx6dlrom7421a1 for ROM-7421 A1 Solo
- imx6dlrsb3430a1 for RSB-3430 A1 Dual-Lite
- imx6dlubc220a1 for UBC-220 A1 Dual-Lite
- imx6qprom7421a1 for ROM-7421 A1 Dual/Quad-Plus
- imx6qrom3420a1 for ROM-3420 A1 Dual/Quad
- imx6qrom5420a1 for ROM-5420 A1 Dual/Quad
- imx6qrom5420b1 for ROM-5420 B1 Dual/Quad
- imx6qrom7420a1 for ROM-7420 A1 Dual/Quad
- imx6qrsb3430a1 for RSB-3430 A1 Dual/Quad
- imx6qrsb4410a1 for RSB-4410 A1 Dual
- imx6qrsb4410a2 for RSB-4410 A2 Dual
- imx6qrsb4411a1 for RSB-4411 A1 Dual/Quad
- imx6qrsb6410a1 for RSB-6410 A1 Dual/Quad
- imx6qrsb6410a2 for RSB-6410 A2 Dual/Quad
- imx6qubcds31a1 for UBC-DS31 A1 Dual
- imx6qwise3310a1 for WISE-3310 A1 Dual
- You can also use the command below to check supported machines on BSP
$ source setup-environment
${MEM_SIZE} : memory size
- 1G / 2G / 512M
${SD_DEVICE} : device name of SD card in Linux (e.g. /dev/sdf)
${SDCARD_IMAGE} : sdcard image built by bitbake (*.sdcard)
${WORKSPACE} : host workspace folders
${UBOOT} :u-boot version(e.g. 2016.03)
${KERNEL} : linux kernel version(e.g. 4.1.15)
${TOOLCHAIN} : toolchain installed directory(e.g. /opt/fsl-imx-x11/4.1.15-2.0.0)
debug console / serial console
- serial terminal program (e.g. minicom, putty, teraterm ...) that serial port is configured to 115200 8N1
terminal console
- terminal program (e.g. gnome-terminal, xfce4-terminal ...)
Docker install and setting
If you don't have docker in your system, then you can follow the below steps to install docker and run it first.
To install Docker Engine on your platform
- Please refer to Docker Installation Guide for details
To pull ubuntu 16.04 image from Docker Hub
$ docker pull advrisc/u16.04-imx8lbv1
$ docker run --name imx6LBV8200 -it advrisc/u16.04-imx8lbv1 /bin/bash
To copy BSP from local filesystem to the container
$ docker cp ${BSP_PACK} imx6LBV8200:/home/adv/
To create container
$ docker run --privileged -it --name ${CONTAINER_NAME} -v ${WORKSPACE}:/home/adv/adv-release-bsp -v /dev:/dev advrisc/u16.04-imx8lbv1 /bin/bash
Get BSP
- You have two methods to put BSP into container created above
Download BSP From GitHub
- The following example shows how to download the Advantech Yocto BSP from GitHub.
- For this example, a directory called adv-release-bsp is created for the project.
- Refer to IoTGateway/BSP/Linux/iMX6/OS Support List new , Official version "imx6LBV8040" is taken as an example :
TBD
- If you want to get latest bsp
$ repo init -u git://github.com/ADVANTECH-Corp/adv-arm-yocto-bsp.git -b imx-linux-sumo -m imx-4.14.98-2.0.0_ga.xml $ repo sync
Copy BSP tarball to Container
TBD
Downloads tarball
TBD
Introducing BSP
- The BSP is based on Yocto Project with Freescale enhanced features for i.MX8, plus specific target board features from Advantech Inc..
- The Advantech Yocto Project BSP Release directory contains a "sources" directory, which contains the recipes used to build,
one or more build directories, and a set of scripts used to set up the environment.
- The recipes used to build the project come from both the community and Advantech. The Yocto Project layers are downloaded
to the sources directory. This sets up the recipes that are used to build the project.
Naming Rule
- The tarball/prebuilt image name is consist of the model name followed by "LB" or "LI" plus version number and released date.
- For example, BSP file name: imx6LBV8040_2017-01-16.tgz
- which , "LB" is acronym of Linux BSP,
- "V8040" stands for Version 8.040.
- For example, Yocto image name: 7421A1LIV8040_DualPlus_2017-01-16.img.gz
- which "7421A1" stands for ROM-7421 A1
- "LI" is acronym for prebuilt Linux Image,
- "DualPlus" means this image is fit for Dual Plus Core/Quad Plus Core.
- For example, Yocto image name: 3420A1LIV8050_DualQuad_2017-01-17.img.gz
- which "3420A1" stands for ROM-3420 A1
- "LI" is acronym for prebuilt Linux Image,
- "DualQuad" means this image is fit for Dual Core/Quad Core.
- For example, Yocto image name: U220A1LIV8080_DualLiteSolo_2017-02-08.img.gz
- which "U220A1" stands for UBC-220 A1
- "LI" is acronym for prebuilt Linux Image,
- "DualLiteSolo" means this image is fit for Dual Lite Core/Solo Core.
BSP Content
Build Instructions
To create one new build environment
- Perform the following commands in terminal console
$ cd ${BSP_HOME}
$ MACHINE=${MC}
DISTRO=fsl-imx-wayland
source fsl-setup-release.sh -b ${BDIR}
- You need to read and accept the EULA.
To continue an exist build environment
- Perform the following commands in terminal console
$ cd ${BSP_HOME}
$ source setup-environment ${BDIR}
To build sdcard image
- To create/continue a build environment
- Perform the following command in terminal console
$ bitbake fsl-image-qt5-validation-imx
- The file,
fsl-image-qt5-validation-imx
-${MC}.sdcard, will be located in directory, ./tmp/deploy/images/${MC}, while building process finished successfully.
To build toolchain installer
- To create/continue a build environment
- Perform the following command in terminal console
$ bitbake meta-toolchain-qt5
- The below installer will be located in the directory "./tmp/deploy/sdk".
- fsl-imx-x11-glibc-x86_64-meta-toolchain-qt5-cortexa9hf-vfp-neon-toolchain-${KERNEL}-1.1.0.sh
- fsl-imx-x11-glibc-x86_64-meta-toolchain-qt5-cortexa9hf-vfp-neon-toolchain-${KERNEL}-1.1.0.sh
To build u-boot
TBD
To build linux kernel
TBD
To modify source code and rebuild linux kernel
TBD
Creating boot-up on-board flash from prebuilt image
To create one boot-up SD card
- Perform the following command in terminal console
$ gunzip -c ${PREBUILT_IMAGE | dd of=${SD_DEVICE} bs=1M
# sync
To transfer whole system to on-board flash
- Boot up from SD card
- Perform the following commands in debug console
# cd /mk_inand
# ./mksd-linux.sh /dev/mmcblk0
- press y followed by Enter, if following message shows up:
- While "[Done]" shows up means the transferring is finished.
Creating boot-up on-board flash from built sdcard image
To create one boot-up SD card
- Perform the following commands in terminal console
$ pushd ${BSP_HOME}/${BDIR}/tmp/deploy/images/${MC}
$ dd if=${SDCARD_IMAGE} of=${SD_DEVICE} bs=1M
$ sync
$ popd
To transfer whole system to on-board flash
- Boot up from SD card
- Insert USB stick that contains ${SDCARD_IMAGE}, USB stick will be auto mounted to /run/media/sda1.
- Perform the following commands in debug console
# umount /dev/mmcblk0p?
# cd /run/media/sda1
# dd if=${SDCARD_IMAGE} of=/dev/mmcblk0 bs=4M conv=fsync
# P2START=$(fdisk -lu | grep mmcblk0p2 | awk '{print $2}')
# echo -e "d\n2\nn\np\n2\n${P2START}\n\nw\n" | fdisk -u /dev/mmcblk0
# umount /dev/mmcblk0p2
# e2fsck -f -y /dev/mmcblk0p2
# resize2fs /dev/mmcblk0p2
# poweroff
Debug console information
If you want to see debug message from device, you need to prepare for hardware device and software tool.
Preparing for hardware device
- The following URL provides information about the debug port slot and the debug port line for each device
Preparing for software tool
- You need to prepare the debug console tool. For example: "minicom" tool or "putty" tool.
- Baud rate: 115200
Customization
Package addition
To add tcf-agent & openssh-sftp-server
- Navigate to the directory where fsl-image-adv.inc located
$ cd ${BSP_HOME}/sources/meta-advantech/recipes-fsl/images
- Add following line to fsl-image-adv.inc
IMAGE_INSTALL += " tcf-agent openssh-sftp-server "
- Continue an exist build environment and build sdcard image
To add chromium browser
- Navigate to the directory where local.conf located
$ cd ${BSP_HOME}/${BDIR}/conf
- Add following two lines to local.conf
CORE_IMAGE_EXTRA_INSTALL += "chromium"
LICENSE_FLAGS_WHITELIST="commercial"
- Continue an exist build environment and build sdcard image
Setting up SDK
- Please follow the section,To build toolchain installer, to build one toolchain installer
- Perform the following command in terminal console
$ cd ${BSP_HOME}/${BDIR}/tmp/deploy/sdk
$ sudo ./fsl-imx-x11-glibc-x86_64-meta-toolchain-qt5-cortexa9hf-vfp-neon-toolchain-${KERNEL}-1.1.0.sh
- Enter new installed directory or just press
Enter
to use default directory. - While
Proceed[y/n]?
shows up, please enter the correct one. - Waiting for the SDK installed (while the following messages show up completely)
Setting up cross compiling environment
- SDK has been set up (ref.Setting up SDK)
- Perform the following command in terminal console
$ source ${TOOLCHAIN}/environment-setup-aarch64-poky-linux
Building & updating u-boot manually
TBD
Building & updating kernel/modules/dtb manually
TBD
Improve boot speed
- Bootloader
1.bootdelay time
- We can cancel the bootdelay time by setting bootloader environment value.
setenv bootdelay 0 env save reset
2.Disable console
- Disable debug message output can also improve boot speed
Disable kernel message
setenv mmcargs setenv bootargs console=${console},${baudrate} ${smp} root=${mmcroot} ${bootargs} quiet env save reset
Or
- Disable debug port
setenv console env save reset
- Rootfs
1.Use smaller rootfs
- We can speed up boot times by using a smaller rootfs instead of fsl-image-qt5 image
eg. core-image-full-cmdline, core-image-minimal
bitbake core-image-full-cmdline
It's a console-only image with more full-featured Linux system functionality installed.
And replace the original fsl-image-qt5 rootfs.
- Services
1. Using update-rc.d remove ,we can remove unnecessary services.
update-rc.d -f <basename> remove
System Recovery
Please refer to Creating boot-up on-board flash from prebuilt image / sdcard image to create a boot-up SD card and transfer whole system to on-board flash.
Package List
In BSP, list all packages which will be built in the image
bitbake -g fsl-image-qt5 && cat pn-depends.dot | grep -v -e '-native' | grep -v digraph | grep -v -e '-image' \ | awk '{print $1}' | sort | uniq
File:Package List
Show all recipes (include non-installed packages)
bitbake -s
File:Package Version List
You can also check ${BDIR}/tmp/deploy/images/${MC}/fsl-image-qt5-${MC}.manifest
It will show the same content with checking by rpm tool on target board.
On target board, list all packages by rpm tool
rpm -qa --root / --dbpath /var/lib/rpm | sort
File:Package List