RK Platform NPU SDK

From ESS-WIKI
Revision as of 06:47, 8 August 2023 by Yunjin.jiang (talk | contribs)
Jump to: navigation, search

Preface

NPU Introduce

RK3568

  • Neural network acceleration engine with processing performance up to 0.8 TOPS
  • Support integer 4, integer 8, integer 16, float 16, Bfloat 16 and tf32 operation
  • Support deep learning frameworks: TensorFlow, Caffe, Tflite, Pytorch, Onnx NN, Android NN, etc.
  • One isolated voltage domain to support DVFS

RK3588

  • Neural network acceleration engine with processing performance up to 6 TOPS
  • Include triple NPU core, and support triple core co-work, dual core co-work, and work independently
  • Support integer 4, integer 8, integer 16, float 16, Bfloat 16 and tf32 operation
  • Embedded 384KBx3 internal buffer
  • Multi-task, multi-scenario in parallel
  • Support deep learning frameworks: TensorFlow, Caffe, Tflite, Pytorch, Onnx NN, Android NN, etc.
  • One isolated voltage domain to support DVFS


RKNN SDK

RKNN SDK (Password: a887)include two parts:

  • rknn-toolkit2
  • rknpu2

├── rknn-toolkit2
│   ├── doc
│   ├── examples
│   ├── packages
│   └── rknn_toolkit_lite2
└── rknpu2
    ├── doc
    ├── examples
    └── runtime

rknpu2

'rknpu2' include documents (rknpu2/doc) and examples (rknpu2/examples) to help to fast develop AI applications using rknn model(*.rknn).

Other models (eg:Caffe、TensorFlow etc) can be translated to rknn model through 'rknn-toolkit2'.

RKNN API Library file librknnrt.so and header file rknn_api.h can be found in rknpu2/runtime.


Released BSP and images have already include NPU driver and runtime libraries.

Here is two examples built in released images:

1. rknn_ssd_demo


2. rknn_mobilenet_demo

rknn-toolkit2

TBD