Difference between revisions of "Deploying Deep Learning"
m |
m |
||
Line 55: | Line 55: | ||
<pre>$ cd jetson-inference/build/aarch64/bin | <pre>$ cd jetson-inference/build/aarch64/bin | ||
</pre> | </pre> | ||
+ | |||
+ | Here are some examples of detecting pedestrians in images with the default SSD-Mobilenet-v2 model. | ||
+ | |||
+ | <pre>$ ./detectnet.py --network=ssd-mobilenet-v2 images/peds_0.jpg images/test/output.jpg | ||
+ | </pre> | ||
+ | |||
+ | [[File:Person.jpg|thumb|left|person]] |
Revision as of 06:18, 13 October 2022
Contents
Linux Version
Ubuntu 18.04
L4T-R32.5.0
Build Deep Learning on Jeston
Reference : https://github.com/dusty-nv/jetson-inference/blob/L4T-R32.5.0/docs/building-repo-2.md
$ sudo apt-get update $ sudo apt-get install git cmake libpython3-dev python3-numpy $ git clone --recursive https://github.com/dusty-nv/jetson-inference $ cd jetson-inference $ mkdir build $ cd build $ cmake ../ $ make -j$(nproc) $ sudo make install $ sudo ldconfig
Classifying Images with ImageNet
Reference : https://github.com/dusty-nv/jetson-inference/blob/L4T-R32.5.0/docs/imagenet-console-2.md
Using the ImageNet Program on Jetson
After building the project, make sure your terminal is located in the aarch64/bin directory.
$ cd jetson-inference/build/aarch64/bin
Next, let's classify an example image with the imagenet program, using Python variants.These images will then be easily viewable from your host device in the jetson-inference/data/images/test directory.
$ ./imagenet.py images/strawberry_0.jpg images/test/output_1.jpg
Locating Objects with DetectNet
Reference : https://github.com/dusty-nv/jetson-inference/blob/L4T-R32.5.0/docs/detectnet-console-2.md
make sure your terminal is located in the aarch64/bin directory.
$ cd jetson-inference/build/aarch64/bin
Here are some examples of detecting pedestrians in images with the default SSD-Mobilenet-v2 model.
$ ./detectnet.py --network=ssd-mobilenet-v2 images/peds_0.jpg images/test/output.jpg