Yocto Linux BSP Ver.7 User Guide for iMX6 series
Contents
- 1 Getting Started
- 2 Customization
- 3 System Recovery
Getting Started
Conventions
${PREBUILT_IMAGE} : compressed prebuilt image (*.img.gz)
${BSP_TARBALL} : BSP tarball (*.tgz)
${BSP_HOME} : home directory of the BSP
${BDIR} : build directory (e.g. build_x11)
${MX6PROC} : i.MX6 Processor
- mx6q for iMX6 Quad Core / Dual Core
- mx6dl for iMX6 Dual Lite / Solo
${IMX6PROC} : i.MX6 Processor
- imx6q / imx6dl
${BOARD} : available target boards list below
- ubc220 / rom3420 / rom5420 / rom7420 / rsb4410 / ubcds31
${BOARD_REV} : board revision
- a1 / a2 / b1
${MC} : machine code combined with ${IMX6PROC}${BOARD}${BOARD_REV}
- for example,
- imx6dlubc220a1 for UBC-220 A1
- imx6qrom3420a1 for ROM-3420 A1
- imx6qrom5420b1 for ROM-5420 B1
- imx6qrsb4410a2 for RSB-4410 A2
${MEM_SIZE} : memory size
- 1G / 2G / 512M
${SD_DEVICE} : device name of SD card in Linux (e.g. /dev/sdf)
${SDCARD_IMAGE} : sdcard image built by bitbake (*.sdcard)
${UBOOT} :u-boot version(e.g. 2015.04)
${KERNEL} : linux kernel version(e.g. 4.1.15)
${TOOLCHAIN} : toolchain installed directory(e.g. /opt/fsl-imx-x11/4.1.15-1.1.0)
debug console / serial console
- serial terminal program (e.g. minicom, putty, teraterm ...) that serial port is configured to 115200 8N1
terminal console
- terminal program (e.g. gnome-terminal, xfce4-terminal ...)
Prerequisites
To install Docker Engine on your platform
- Please refer to Docker Installation Guide for details
To pull ubuntu 12.04 image from Docker Hub & run the image
$ docker pull advrisc/u12.04-imx6lbv3
$ docker run --privileged --name imx6LBV7000 -it -v ${SD_DEVICE}:${SD_DEVICE} advrisc/u12.04-imx6lbv3 /bin/bash
To copy BSP from local filesystem to the container
$ docker cp ${BSP_PACK} imx6LBV7000:/home/adv/
To copy files from the container's filesystem to local machine
$ docker cp imx6LBV7000:/home/adv/${BSP_HOME}/yocto_build/tmp/deploy/images/${MC} ~
Introducing BSP
- The BSP is based on Yocto Project with Freescale enhanced features for i.MX6, plus specific target board features from Advantech Inc..
Naming Rule
- The tarball/prebuilt image name is consist of the model name followed by "LB" or "LI" plus version number and released date.
- For example, 4410A1LBV7000_2016-06-23.tgz which "4410A1" stands for RSB-4410 A1, "LB" is acronym of Linux BSP, "V7000" stands for Version 7.000.
- For example, 4410A1LIV7000_DualQuad_2016-06-23.img.gz which "LI" is acronym for prebuilt Linux Image, DualQuad means this image is fit for Dual Core/Quad Core.
BSP tarball
- Unpack BSP tarball to home directory by performing the following command:
$ tar xvf ${BSP_TARBALL} -C ~/
Prebuilt image
- Perform the following command to build one boot-up SD card
$ gunzip -c ${PREBUILT_IMAGE} | dd of=${SD_DEVICE} bs=1M
Build Instructions
To create one new build environment
- Perform the following commands in terminal console
$ cd ${BSP_HOME}
$ MACHINE=${MC} source fsl-setup-release.sh -b ${BDIR} -e x11
- You need to read and accept the EULA.
To continue an exist build environment
- Perform the following commands in terminal console
$ cd ${BSP_HOME}
$ source setup-environment ${BDIR}
To build sdcard image
- To create/continue a build environment
- Perform the following command in terminal console
$ bitbake fsl-image-qt5
- The file, fsl-image-qt5-${MC}.sdcard, will be located in directory, ./tmp/deploy/images/${MC}, while building process finished successfully.
To build toolchain installer
- To create/continue a build environment
- Perform the following command in terminal console
$ bitbake meta-toolchain-qt5 -c populate_sdk
- The below installer will be located in the directory "./tmp/deploy/sdk".
- fsl-imx-x11-glibc-x86_64-meta-toolchain-qt5-cortexa9hf-vfp-neon-toolchain-${KERNEL}-1.1.0.sh
- fsl-imx-x11-glibc-x86_64-meta-toolchain-qt5-cortexa9hf-vfp-neon-toolchain-${KERNEL}-1.1.0.sh
To build u-boot
- To create/continue a build environment
- Perform the following command in terminal console
$ bitbake u-boot-imx
- The two files, u-boot_crc.bin & u-boot_crc.bin.crc, will be located in the directory, ./tmp/deploy/images/${MC}.
To build linux kernel
- To create/continue a build environment
- Perform the following command in terminal console
- to show up menuconfig
$ bitbake linux-imx -c menuconfig
- to do build
$ bitbake linux-imx
- to show up menuconfig
- The two files, zImage & zImage-${IMX6PROC}-${BOARD}-${BOARD_REV}.dtb, will be located in the directory, ./tmp/deploy/images/${MC}.
Creating boot-up on-board flash from prebuilt image
To create one boot-up SD card
- Perform the following command in terminal console
$ gunzip -c ${PREBUILT_IMAGE | dd of=${SD_DEVICE} bs=1M
To transfer whole system to on-board flash
- Boot up from SD card
- Perform the following commands in debug console
# cd /mk_inand
# ./mksd-linux.sh /dev/mmcblk0
- press y followed by Enter, if following message shows up:
- While "[Done]" shows up means the transferring is finished.
Creating boot-up on-board flash from built sdcard image
To create one boot-up SD card
- Perform the following commands in terminal console
$ pushd ${BSP_HOME}/${BDIR}/tmp/deploy/images/${MC}
$ dd if=${SDCARD_IMAGE} of=${SD_DEVICE} bs=1M
$ popd
To transfer whole system to on-board flash
- Boot up from SD card
- Insert USB stick that contains ${SDCARD_IMAGE}, USB stick will be auto mounted to /run/media/sda1.
- Perform the following commands in debug console
# umount /dev/mmcblk0p?
# cd /run/media/sda1
# dd if=${SDCARD_IMAGE} of=/dev/mmcblk0 bs=4M conv=fsync
# P2START=$(fdisk -lu | grep mmcblk0p2 | awk '{print $2}')
# echo -e "d\n2\nn\np\n2\n${P2START}\n\nw\n" | fdisk -u /dev/mmcblk0
# umount /dev/mmcblk0p2
# e2fsck -f -y /dev/mmcblk0p2
# resize2fs /dev/mmcblk0p2
# poweroff
Customization
Package addition
To add tcf-agent & openssh-sftp-server
- Navigate to the directory where fsl-image-adv.inc located
$ cd ${BSP_HOME}/sources/meta-advantech/recipes-fsl/images
- Add following line to fsl-image-adv.inc
IMAGE_INSTALL += " tcf-agent openssh-sftp-server "
- Continue an exist build environment and build sdcard image
To add chromium browser
- Navigate to the directory where local.conf located
$ cd ${BSP_HOME}/${BDIR}/conf
- Add following two lines to local.conf
CORE_IMAGE_EXTRA_INSTALL += "chromium"
LICENSE_FLAGS_WHITELIST="commercial"
- Continue an exist build environment and build sdcard image
Setting up SDK
- Please follow the section,To build toolchain installer, to build one toolchain installer
- Perform the following command in terminal console
$ cd ${BSP_HOME}/${BDIR}/tmp/deploy/sdk
$ sudo ./fsl-imx-x11-glibc-x86_64-meta-toolchain-qt5-cortexa9hf-vfp-neon-toolchain-${KERNEL}-1.1.0.sh
- Enter new installed directory or just press
Enter
to use default directory. - While
Proceed[y/n]?
shows up, please enter the correct one. - Waiting for the SDK installed (while the following messages show up completely)
Setting up cross compiling environment
- SDK has been set up (ref. Setting up SDK)
- Perform the following command in terminal console
$ source ${TOOLCHAIN}/environment-setup-cortexa9hf-vfp-neon-poky-linux-gnueabi
Building & updating u-boot manually
To build u-boot
- The cross compiling environment has been set up. (ref. Setting up cross compiling environment)
- Make one copy from Yocto working directory
$ mkdir -p ~/code
$ pushd ${BSP_HOME}/${BDIR}/tmp/work/${MC}-poky-linux-gnueabi/
$ rm -rf ~/code/u-boot-imx
$ cp -a ./u-boot-imx/${UBOOT}-r0/git ~/code/u-boot-imx
$ popd
- Configure u-boot
$ cd ~/code/u-boot-imx
$ make distclean
$ make ${MX6PROC}${BOARD}${BOARD_REV}_${MEM_SIZE}_config
- Start building u-boot
$ make -j4 LDFLAGS=
- The two files, u-boot-crc.bin & u-boot-crc.bin.crc, are located in directory "~/code/u-boot-imx".
To update u-boot to target device
- Perform the following command to transfer to exist boot-up SD card
$ dd if=u-boot_crc.bin.crc of=${SD_DEVICE} bs=512 seek=2 conv=fsync
$ dd if=u-boot-crc.bin of=${SD_DEVICE} bs=512 seek=3 conv=fsync
- Make sure new u-boot does work then perform the following commands to transfer to on-board flash
# dd if=u-boot_crc.bin.crc of=/dev/mmcblk0 bs=512 seek=2 conv=fsync
# dd if=u-boot-crc.bin of=/dev/mmcblk0 bs=512 seek=3 conv=fsync
Building & updating kernel/modules/dtb manually
To build kernel/modules/dtb
- The cross compiling environment has been set up. (ref. Setting up cross compiling environment)
- Make one copy from Yocto working directory
$ mkdir -p ~/code
$ pushd ${BSP_HOME}/${BDIR}/tmp/work-shared/${MC}/
$ rm -rf ~/code/linux-imx
$ cp -a ./kernel-source ~/code/inux-imx
$ popd
- Configure linux kernel
$ cd ~/code/linux-imx
$ make distclean
$ make imx_v7_adv_defconfig
$ make menuconfig PKG_CONFIG_SYSROOT_DIR= PKG_CONFIG_PATH=
- Start building linux kernel
$ make -j4 zImage LOADADDR=0x10008000 LDFLAGS=
- The kernel image file, zImage, is located in the directory "./arch/arm/boot/".
- Start building kernel modules
$ make -j4 modules LDFLAGS=
- Copy all modules to a temporary rootfs directory, "~/temp/rootfs"
$ make modules_install INSTALL_MOD_PATH=~/temp/rootfs
- Start building device tree blob
$ make -j4 ${IMX6PROC}-${BOARD}-${BOARD_REV}.dtb
- The device tree blob, ${IMX6PROC}-${BOARD}-${BOARD_REV}.dtb, is located in the directory "./arch/arm/boot/dts/".
To update kernel/modules/dtb to target device
- Copy zImage & ${IMX6PROC}-${BOARD}-${BOARD_REV}.dtb to the 1st partition of SD card
- Copy modues to the 2nd partition of SD card.
- Make sure all new linux kernel, device tree and kernel modules work well, then copy all of them to the on-board flash
System Recovery
Please refer to Creating boot-up on-board flash from prebuilt image / sdcard image to create a boot-up SD card and transfer whole system to on-board flash.