Edge AI SDK/AI Framework/Nvidia x86 64

From ESS-WIKI
Revision as of 10:27, 16 December 2024 by Eric.liang (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

CUDA

The NVIDIA® CUDA® Toolkit provides a development environment for creating high-performance, GPU-accelerated applications. With it, you can develop, optimize, and deploy your applications on GPU-accelerated embedded systems, desktop workstations, enterprise data centers, cloud-based platforms, and supercomputers. The toolkit includes GPU-accelerated libraries, debugging and optimization tools, a C/C++ compiler, and a runtime library.

More Info refer to [1]

DeepStream

DeepStream is a complete streaming analytics toolkit based on GStreamer for AI-based multi-sensor processing, video, audio, and image understanding. It’s ideal for vision AI developers, software partners, startups, and OEMs building IVA apps and services. Developers can now create stream processing pipelines that incorporate neural networks and other complex processing tasks such as tracking, video encoding/decoding, and video rendering. DeepStream pipelines enable real-time analytics on video, image, and sensor data.

DeepStream’s multi-platform support gives you a faster, easier way to develop vision AI applications and services. You can even deploy them on-premises, on the edge, and in the cloud with the click of a button. 

More Info refer to https://developer.nvidia.com/deepstream-sdk

DeepStream 6.4 Prerequisites:

You must install the following components:

  • Ubuntu 22.04
  • GStreamer 1.20.3
  • Nvidia Driver R535.104.12
  • CUDA 12.2
  • TensorRT 8.6.1.6

TensorRT

TensorRT is a high performance deep learning inference runtime for image classification, segmentation, and object detection neural networks. TensorRT is built on CUDA, NVIDIA’s parallel programming model, and enables you to optimize inference for all deep learning frameworks. It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep learning inference applications.

 

Edge AI SDK / Application

Quick Start (Vision) / Application / Video or WebCam / dGPU

EdgeAISDK rtxa5000.png

 

Application Model
Object Detection yolov3.weights
Person Detection sample_ssd_relu6.uff
Face Detection facenet.etlt
Pose Estimation model.etlt

Benchmark

In order to measure FPS, power and latency of the RTX-A5000 you can use the command "trtexec" . For more information please refer to the trtexec documentation in link.

 

 

 

RTX-A5000 Benchmark

trtexec --loadEngine=models/model_fp16.engine --batch=16

EdgeAISDK rtxa5000 trtexec.png

 

 

Edge AI SDK / Benchmark

Evaluate the RTX-A5000 performance with Edge AI SDK.

EdgeAISDK rtxa5000 benchmark.png

 

NVIDIA System Management Interface

The NVIDIA System Management Interface (nvidia-smi) is a command line utility, based on top of the NVIDIA Management Library (NVML), intended to aid in the management and monitoring of NVIDIA GPU devices. 

This utility allows administrators to query GPU device state and with the appropriate privileges, permits administrators to modify GPU device state.

nvidia-smi

 

 

 

RTX-A5000 Utilization

nvidia-smi

EdgeAISDK rtxa5000 utility.png

 

 

RTX-A5000 Temperature

nvidia-smi

  EdgeAISDK rtxa5000 thermal.png

Edge AI SDK / Monitoring

EdgeAISDK rtxa5000 UI.png